A SURVEY OF J-SPACES

E. MICHAEL

1. Basic concepts

A space X is a J-space if, whenever $\{A, B\}$ is a closed cover of X with $A \cap B$ compact, then A or B is compact. A space X is a strong J-space if every compact $K \subset X$ is contained in a compact $L \subset X$ with $X \setminus L$ connected. [As in [4], all maps are continuous and all spaces are Hausdorff.]

1.1. Every strong J-space X is a J-space. The two concepts coincide when X is locally connected, but in general (even for closed subsets of \mathbb{R}^2) they do not.

2. Examples

2.1. A topological linear space X is a (strong) J-space if and only if $X \neq \mathbb{R}$.

2.2. If X and Y are connected and non-compact, then $X \times Y$ is a strong J-space.1

2.3. Let Y be a compact manifold with boundary B, and let $A \subset B$. Then $Y \setminus A$ is a (strong) J-space if and only if A is connected.

1This was proved in [5].
3. Characterizations by closed maps

A map \(f : X \to Y \) is called boundary-perfect if \(f \) is closed and \(\text{bdry} \, f^{-1}(y) \) is compact for every \(y \in Y \). It follows from [3] that every closed map \(f : X \to Y \) from a paracompact space \(X \) to a \(q \)-space \(Y \) is boundary-perfect.\(^2\)

3.1. A space \(X \) is a \(J \)-space if and only if every boundary-perfect map \(f : X \to Y \) onto a non-compact space \(Y \) is perfect.

3.2. If \(X \) is a \(J \)-space, then every boundary-perfect map \(f : X \to Y \) has at most one non-compact fiber. The converse holds if \(X \) is locally compact.

3.3. Let \(X \) be paracompact and locally compact. Then the following are equivalent.

(a) \(X \) is a \(J \)-space.
(b) Every closed map \(f : X \to Y \) onto a non-compact, locally compact space \(Y \) is perfect.
(c) Every closed map \(f : X \to Y \) onto a locally compact space \(Y \) has at most one non-compact fiber.

3.4. Let \(X \) be metrizable. Then the following are equivalent

(a) \(X \) is a \(J \)-space.
(b) Every closed map \(f : X \to Y \) onto a non-compact, metrizable space \(Y \) is perfect.

4. Characterization by compactifications

Call a set \(A \subset Y \) a boundary set for \(Y \) if \(\text{Int} \, A = \emptyset \) and, whenever \(U \supset A \) is open in \(Y \) and \(\{W_1, W_2\} \) is a disjoint, relatively open cover of \(U \setminus A \), then no \(y \in A \) lies in \(\overline{W_1 \cap W_2} \). Call a set \(A \subset Y \) a strong boundary set for \(Y \) if \(\text{Int} \, A = \emptyset \) and, whenever \(U \supset A \) is open in \(Y \), then every \(y \in A \) has an open neighborhood \(V \subset U \) with \(V \setminus A \) connected.

It is easy to see that, if \(Y \) is a manifold with boundary \(B \), then every \(A \subset B \) is a strong boundary set for \(Y \). And it follows from the proof of [1, Lemma 4] (or from [2, Proposition 3.5]) that, if \(Y \) is completely regular, then \(\beta X \setminus X \) is a boundary set for \(\beta X \).

4.1. Let \(Y \) be a compactification of \(X \), and suppose either that \(X \) is locally compact or that \(Y \) is metrizable. Then the following are equivalent.

(a) \(X \) is a (strong) \(J \)-space.
(b) \(Y \setminus X \) is connected and a (strong) boundary set for \(Y \).

5. Preservation

5.1. \(J \)-spaces are preserved by boundary-perfect images. (False for strong \(J \)-spaces, even with perfect images.)

\(^{q}\)\(q\)-spaces (see [3]) include all locally compact and all metrizable spaces.
5.2. J-spaces and strong J-spaces are preserved by monotone, perfect pre-images.

5.3. If X_1, X_2 are connected, then $X_1 \times X_2$ is a (strong) J-space if and only if either X_1, X_2 are both (strong) J-spaces or both are non-compact.

5.4. Let $\{X_1, X_2\}$ be a closed cover of X with $X_1 \cap X_2$ compact. Then X is a (strong) J-space if and only if X_1, X_2 are both (strong) J-spaces and X_1 or X_2 is compact.

5.5. If X is a (strong) J-space, so is every component of X. (False for J-spaces).

References

University of Washington, Seattle, WA, U.S.A.