FELL-CONTINUOUS SELECTIONS AND TOPOLOGICALLY WELL-ORDERABLE SPACES II

VALENTIN GUTEV

Abstract. The present paper improves a result of [3] by showing that a space X is topologically well-orderable if and only if there exists a selection for $F_2(X)$ which is continuous with respect to the Fell topology on $F_2(X)$. In particular, this implies that $F(X)$ has a Fell-continuous selection if and only if $F_2(X)$ has a Fell-continuous selection.

1. Introduction

Let X be a topological space, and let $F(X)$ be the family of all non-empty closed subsets of X. Also, let τ be a topology on $F(X)$ and $D \subset F(X)$. A map $f : D \to X$ is a selection for D if $f(S) \in S$ for every $S \in D$. A map $f : D \to X$ is a τ-continuous selection for D if it is a selection for D which is continuous with respect to the relative topology τ on D as a subspace of $F(X)$.

Two topologies on $F(X)$ will play the most important role in this paper. The first one is the Vietoris topology τ_V which is generated by all collections of the form

$$\langle V \rangle = \left\{ S \in F(X) : S \cap V \neq \emptyset, V \in \mathcal{V}, \text{ and } S \subset \bigcup \mathcal{V} \right\},$$

where \mathcal{V} runs over the finite families of open subsets of X. The other one is the Fell topology τ_F which is defined by all basic Vietoris neighbourhood $\langle V \rangle$ with the property that $X \setminus \bigcup \mathcal{V}$ is compact.

Finally, let us recall that a space X is topologically well-orderable (see Engelking, Heath and Michael [2]) if there exists a linear order “\prec” on X such that X is a linear ordered topological space with respect to \prec, and every non-empty closed subset of X has a \prec-minimal element.

2000 Mathematics Subject Classification. Primary 54B20, 54C65; Secondary 54D45, 54F05.

Key words and phrases. Hyperspace topology, selection, ordered space, local compactness.
Recently, the topologically well-orderable spaces were characterized in [3, Theorem 1.3] by means of Fell-continuous selections for their hyperspaces of non-empty closed subsets.

Theorem 1.1 ([3]). *A Hausdorff space X is topologically well-orderable if and only if $\mathcal{F}(X)$ has a τ_F-continuous selection.*

In the present paper, we improve Theorem 1.1 by showing that one may use τ_F-continuous selections only for the subset $\mathcal{F}_2(X) = \{S \in \mathcal{F}(X) : |S| \leq 2\}$ of $\mathcal{F}(X)$. Namely, the following theorem will be proven.

Theorem 1.2. *A Hausdorff space X is topologically well-orderable if and only if $\mathcal{F}_2(X)$ has a τ_F-continuous selection.*

About related results for Vietoris-continuous selections, the interested reader is referred to van Mill and Wattel [6].

Theorem 1.2 is interesting also from another point of view. According to Theorem 1.1, it implies the following result which may have an independent interest.

Corollary 1.3. *If X is a Hausdorff space, then $\mathcal{F}(X)$ has a τ_F-continuous selection if and only if $\mathcal{F}_2(X)$ has a τ_F-continuous selection.*

A word should be said also about the proof of Theorem 1.2. In general, it is based on the proof of Theorem 1.1 stated in [3], and is separated in a few different steps which are natural generalizations of the corresponding ones given in [3]. In fact, the paper demonstrates that all statements of [3] remain true if $\mathcal{F}(X)$ is replaced by $\mathcal{F}_2(X)$. Related to this, the interested reader may consult an alternative proof of Theorem 1.2 given in [1] and based again on the scheme in [3].

2. A REDUCTION TO LOCALLY COMPACT SPACES

In the sequel, all spaces are assumed to be at least Hausdorff.

In this section, we prove the following generalization of [3, Theorem 2.1].

Theorem 2.1. *Let X be a space such that $\mathcal{F}_2(X)$ has a τ_F-continuous selection. Then X is locally compact.*

Proof. We follow the proof of [3, Theorem 2.1]. Namely, let f be a τ_F-continuous selection for $\mathcal{F}_2(X)$ and suppose, if possible, that X is not locally compact. Hence, there exists a point $p \in X$ such that \mathcal{V} is not compact for every neighbourhood V of p in X. Claim that there exists a point $q \in X$ such that

(1) \hspace{1cm} $q \neq p$ and $f(\{p, q\}) = p$.

To this purpose, note that there exists $F \in \mathcal{F}(X)$ such that F is not compact and $p \notin F$. Then, $f^{-1}(X \setminus F)$ is a τ_F-neighbourhood of $\{p\}$ in $\mathcal{F}_2(X)$, so
there exists a finite family W of open subsets of X such that $X \setminus \bigcup W$ is compact and

$$\{p\} \in (W) \cap \mathcal{F}_2(X) \subset f^{-1}(X \setminus F).$$

Then, $F \cap W \neq \emptyset$ for some $W \in W$ because F is not compact. Therefore, there exists a point $q \in F \cap (\bigcup W)$. This q is as required.

Let q be as in (1). Since X is Hausdorff, $f(\{q\}) \neq f(\{p, q\})$, and f is τ_F-continuous, there now exist two finite families \mathcal{U} and \mathcal{V} of open subsets of X such that $X \setminus \bigcup \mathcal{U}$ is compact, $\{q\} \in (\mathcal{U})$, $\{p, q\} \in (\mathcal{V})$, and $(\mathcal{U}) \cap (\mathcal{V}) = \emptyset$. Then,

$$\text{(2)} \quad p \in V_p = \bigcap\{V \in \mathcal{V} : p \in V\} \subset X \setminus \bigcup \mathcal{U}.$$

Indeed, suppose there is a point $\ell \in V_p \cap (\bigcup \mathcal{U})$. Then, $\{\ell, q\} \in (\mathcal{U})$ because $\{q\} \in (\mathcal{U})$. However, we also get that $\{\ell, q\} \in (\mathcal{V})$ because $q \notin V$ for some $V \in \mathcal{V}$ implies $p \in V$, hence $\ell \in V_p \subset V$. Thus, we finally get that $\{\ell, q\} \in (\mathcal{U}) \cap (\mathcal{V})$ which is impossible. So, (2) holds as well.

To finish the proof, it remains to observe that this contradicts the choice of p. Namely V_p becomes a neighbourhood of p which, by (2), has a compact closure because $X \setminus \bigcup \mathcal{U}$ is compact.

\[\square\]

3. A reduction to compact spaces

For a locally compact space X we will use αX to denote the one point compactification of X. For a non-compact locally compact X let us agree to denote by α the point of the singleton $\alpha X \setminus X$.

In what follows, to every family $D \subset \mathcal{F}(X)$ we associate a family $\alpha(D) \subset \mathcal{F}(\alpha X)$ defined by

$$\alpha(D) = \{S \in \mathcal{F}(\alpha X) : S \cap X \in D \cup \{\emptyset\}\}.$$

The following extension theorem was actually proven in [3, Theorem 3.1].

Theorem 3.1. Let X be a locally compact non-compact space X, and $D \subset \mathcal{F}(X)$. Then, D has a τ_F-continuous selection if and only if $\alpha(D)$ has a τ_V-continuous selection g such that $g^{-1}(\alpha) = \{\alpha\}$.

Proof. Just the same proof as in [3, Theorem 3.1] works. Namely, if f is a τ_F-continuous selection for D, we may define a selection g for $\alpha(D)$ by $g(S) = f(S \cap X)$ if $S \cap X \neq \emptyset$ and $g(S) = \alpha$ otherwise, where $S \in \alpha(D)$. Clearly $g^{-1}(\alpha) = \{\alpha\}$ and, as shown in [3, Theorem 3.1], g is τ_V-continuous. If now g is a τ_V-continuous selection for $\alpha(D)$, with $g^{-1}(\alpha) = \{\alpha\}$, then $g(S \cup \{\alpha\}) \in S$ for every $S \in D$, so we may define a selection f for D by $f(S) = g(S \cup \{\alpha\})$, $S \in D$. The verification that f is τ_F-continuous was done in [3, Theorem 3.1].

\[\square\]
4. Special selections and connected sets

In what follows, to every selection \(f : \mathcal{F}_2(X) \to X \) we associate an order-like relation "\(\prec_f \)" on \(X \) (see Michael [5]) defined for \(x \neq y \) by

\[
x_1 \prec_f x_2 \iff f(\{x_1, x_2\}) = x_1.
\]

Further, we will need also the following \(\prec_f \)-intervals:

\[
(x, +\infty)_{\prec_f} = \{z \in X : x \prec_f z\}
\]

and

\[
[x, +\infty)_{\prec_f} = \{z \in X : x \leq_f z\}.
\]

Now, we provide the generalization of [3, Theorem 4.1] for the case of \(\mathcal{F}_2(X) \).

Theorem 4.1. Let \(X \) be a space, \(a \in X \), and let \(A \in \mathcal{F}(X) \) be a connected set such that \(|A| > 1 \) and \(a \in A \setminus \overline{A} \). Also, let \(f : \mathcal{F}_2(X) \to X \) be a \(\tau_V \)-continuous selection for \(\mathcal{F}_2(X) \). Then, \(f^{-1}(a) \neq \{a\} \).

Proof. Suppose, on the contrary, that \(f^{-1}(a) = \{a\} \). By hypothesis, there exists a point \(b \in A \), with \(b \neq a \). Since \(f \) is \(\tau_V \)-continuous, \(f(\{a, b\}) = b \) and \(a \in \overline{X \setminus A} \), we can find a point \(c \in X \setminus A \) such that \(f(\{b, c\}) = b \). Then, \(B = A \cap (c, +\infty)_{\prec_f} \) is a clopen subset of \(A \) because \(B = A \cap [c, +\infty)_{\prec_f} \), see [5]. However, this is impossible because \(b \in A \setminus B \), while \(a \in B \). \(\Box \)

5. A further result about special selections

Following [3], we shall say that a point \(a \in X \) is a partition of \(X \) if there are open subset \(L, R \subset X \setminus \{a\} \) such that \(L \cap R = \emptyset \) and \(L \cap R = \emptyset \).

We finalize the preparation for the proof of Theorem 1.2 with the following result about special Vietoris continuous selections and partitions which generalizes [3, Theorem 5.1].

Theorem 5.1. Let \(X \) be a compact space, \(f \) a \(\tau_V \)-continuous selection for \(\mathcal{F}_2(X) \), and let \(a \in X \) be a partition of \(X \) such that \(f^{-1}(a) = \{a\} \). Then, \(X \) is first countable at \(a \).

Proof. By definition, there are open sets \(L, R \subset X \setminus \{a\} \) such that \(\overline{L} \cap \overline{R} = \{a\} \) and \(L \cap R = \emptyset \). Hence, both \(L \) and \(R \) are non-empty. Take a point \(\ell_0 \in L \). Then, by hypothesis, \(f(\{\ell_0, a\}) = \ell_0 \). Since \(f \) is \(\tau_V \)-continuous, this implies the existence of a neighbourhood \(L_0 \subset L \) of \(\ell_0 \) and a neighbourhood \(V_0 \) of \(a \) such that

\[
L_0 \cap V_0 = \emptyset \text{ and } f(\{L_0, V_0\}) \subset \mathcal{F}_2(X) \subset L_0.
\]

Since \(a \in \overline{R} \), there exists a point \(r_0 \in V_0 \cap R \). Observe that \(f(\{a, r_0\}) = r_0 \in V_0 \). Hence, just like before, we may find a neighbourhood \(R_0 \subset R \cap V_0 \) of \(r_0 \) and a neighbourhood \(W_0 \subset V_0 \) of \(a \) such that

\[
R_0 \cap W_0 = \emptyset \text{ and } f(\{R_0, W_0\}) \subset \mathcal{F}_2(X) \subset R_0.
\]
Thus, by induction, we may construct a sequence \(\{ \ell_n : n < \omega \} \) of points of \(L \), a sequence \(\{ r_n : n < \omega \} \) of points of \(R \), and open sets \(L_n, V_n, R_n, W_n \subset X \) such that

\[
\begin{align*}
\ell_n & \in L_n, \\
a & \in V_n, \\
L_n \cap V_n & = \emptyset \text{ and } f(\{L_n, V_n\} \cap F_2(X)) \subset L_n, \\
r_n & \in R_n, \\
a & \in W_n, \\
R_n \cap W_n & = \emptyset \text{ and } f(\{R_n, W_n\} \cap F_2(X)) \subset R_n,
\end{align*}
\]

and

\[
\begin{align*}
V_{n+1} & \subset W_n \subset V_n, \\
L_{n+1} & \subset L \cap W_n \text{ and } R_n \subset R \cap V_n.
\end{align*}
\]

Since \(X \) is compact, \(\{ \ell_n : n < \omega \} \) has a cluster point \(\ell \), and \(\{ r_n : n < \omega \} \) has a cluster point \(r \). We claim that \(\ell = r \). Indeed, suppose for instance that \(\ell \not< f r \) (the case \(r \not< f \ell \) is symmetric). Then, there are disjoint open sets \(U_\ell \) and \(U_r \) such that \(\ell \in U_\ell \), \(r \in U_r \), and \(x \not< f y \) for every \(x \in U_\ell \) and \(y \in U_r \), see [4]. Next, take \(\ell_n \in U_\ell \) and \(r_m \in U_r \) such that \(n > m \). Then, we have \(\ell_n \not< f r_m \). However, by (3), (4) and (5), we get that \(\{ r_m, \ell_n \} \in \langle \{ R_m, W_m \} \rangle \cap F_2(X) \), and therefore \(f(\{ r_m, \ell_n \}) = r_m \). This is clearly impossible, so \(\ell = r \).

Having already established this, let us observe that \(b = \ell = r \) implies \(b \in L \cap R \) because \(\ell \in L \) and \(r \in R \). However, \(L \cap R = \{ a \} \) which finally implies that \(b = a \).

We are now ready to prove that, for instance, \(\{ W_n : n < \omega \} \) is a local base at \(a \). To this end, suppose if possible that this fails. Hence, there exists an open neighbourhood \(U \) of \(a \) such that \(W_n \setminus U \neq \emptyset \) for every \(n < \omega \). Next, whenever \(n < \omega \), take a point \(t_n \in W_n \setminus U \). Since \(X \) is compact, \(\{ t_n : n < \omega \} \) has a cluster point \(t \not\in U \). Then, \(t \not< f a \) and, as before, we may find disjoint open sets \(U_t \) and \(U_a \) such that \(t \in U_t \), \(a \in U_a \), and \(x \not< f y \) for every \(x \in U_t \) and \(y \in U_a \). Next, take \(t_n \in U_t \) and \(r_m \in U_a \) such that \(n > m \). Then, \(t_n \not< f r_m \); while, by (4) and (5), \(r_m \not< f t_n \) because \(\{ r_m, t_n \} \in \langle \{ R_m, W_m \} \rangle \cap F_2(X) \). The contradiction so obtained completes the proof. \(\Box \)

6. Proof of Theorem 1.2

In case \(X \) is a topologically well-orderable space, we may use Theorem 1.1.

Suppose that \(F_2(X) \) has a \(\tau_f \)-continuous selection. If \(X \) is compact, then Theorem 1.2 is, in fact, a result of van Mill and Wattel [6]. Let \(X \) be non-compact. By Theorem 2.1, \(X \) is locally compact. Then, by Theorem 3.1,
\(\mathcal{F}_2(\alpha X) \) has a \(\tau_0 \)-continuous selection \(f \) such that \(f^{-1}(\alpha) = \{ \{ \alpha \} \} \). Relying once again on the result of [6], \(\alpha X \) is a linear ordered topological space with respect to some linear order \(\prec \) on \(\alpha X \). It now suffices to show that there exists a compatible (with the topology of \(\alpha X \)) linear order \(\prec \) on \(\alpha X \) such that \(\alpha \) is either the first or the last element of \(\alpha X \), see [2, Lemma 4.1]. We show this following precisely the proof of Theorem 1.1 in [3]. Namely, let

\[
L = \{ x \in \alpha X : x < \alpha \} \quad \text{and} \quad R = \{ x \in \alpha X : \alpha < x \}.
\]

Note that \(L, R \subset \alpha X \setminus \{ \alpha \} = X \) are open subsets of \(\alpha X \). In case one of these sets is also closed, the desired linear order \(\prec \) on \(\alpha X \) can be defined by exchanging the places of \(L \) and \(R \). Namely, by letting for \(x, y \in \alpha X \) that \(x < y \) if and only if

\[
x, y \in L \text{ and } x < y, \quad x, y \in R \text{ and } x < y, \quad x \in R \text{ and } y \in L.
\]

Finally, let us consider the case \(L \cap R = \{ \alpha \} \). Then, \(\alpha \) is a partion of \(\alpha X \). Hence, by Theorem 5.1, \(\alpha X \) is first countable at \(\alpha \). Let \(C[\alpha] \) be the connected component of \(\alpha \) in \(\alpha X \). Since \(f^{-1}(\alpha) = \{ \{ \alpha \} \} \), it now follows from Theorem 4.1 that \(C[\alpha] = \{ \alpha \} \). Indeed, \(C' = C[\alpha] \cap \{ x \in \alpha X : x \leq \alpha \} \) and \(C'' = C[\alpha] \cap \{ x \in \alpha X : x \geq \alpha \} \) are both connected subsets of \(X \) with \(\alpha \in C' \cap (X \setminus C') \) and \(\alpha \in C'' \cap (X \setminus C'') \) (consider that \(X \setminus C' \supset R \) and \(X \setminus C'' \supset L \)), so that \(C' = \{ \alpha \} \) and \(C'' = \{ \alpha \} \), whence also \(C[\alpha] = \{ \alpha \} \).

Then, \(\alpha X \) has a clopen base at \(\alpha \). Indeed, let \(\ell \in L \) and \(r \in R \). Since \(C[\alpha] \) is also the quasi-component of the point \(\alpha \), there are clopen neighbourhoods \(U_{\ell}, U_r \) of \(\alpha \) such that \(\ell \notin U_{\ell} \) and \(r \notin U_r \). Then,

\[
U = \{ x \in U_{\ell} \cap U_r : \ell < x < r \} = \{ x \in U_{\ell} \cap U_r : \ell \leq x \leq r \}
\]

is a clopen neighbourhood of \(\alpha \) with \(U \subset \{ x \in X : \ell < x < r \} \).

That is, \(\alpha X \) has a clopen base at \(\alpha \) and it is first countable at this point. Then, let \(\{ U_n : n < \omega \} \) be a decreasing clopen base at \(\alpha \), with \(U_0 = \alpha X \). Next, for every point \(x \in X \), let \(n(x) = \max\{ n : x \in U_n \} \) and, for convenience, \(n(\alpha) = \omega \). Finally, we may define a linear order \(\prec \) on \(\alpha X \) by putting \(x \prec y \) if and only if

either \(n(x) < n(y) \) or \(n(x) = n(y) \) and \(x < y \).

Since \(\{ U_n : n < \omega \} \) is a decreasing clopen base at \(\alpha \), the order \(\prec \) is compatible with the topology of \(\alpha X \). It is clear that, with respect to \(\prec \), \(\alpha \) is the last element of \(X \). This completes the proof.

References

School of Mathematical and Statistical Sciences, Faculty of Science, University of Natal, King George V Avenue, Durban 4041, South Africa

E-mail address: gutev@nu.ac.za