A FUNCTIONAL EQUATION CHARACTERIZING CUBIC POLYNOMIALS AND ITS STABILITY

SOON-MO JUNG and PRASANNA K. SAHOO

(Received 30 May 2000)

ABSTRACT. We study the generalized Hyers-Ulam stability of the functional equation
\[f(x_1, x_2, x_3) = h(x_1 + x_2 + x_3). \]

2000 Mathematics Subject Classification. 39B22, 39B82.

1. Introduction. Given an operator \(T \) and a solution class \(\{u\} \) with the property
that \(T(u) = 0 \), when does \(\|T(v)\| \leq \varepsilon \) for an \(\varepsilon > 0 \) imply that \(\|u - v\| \leq \delta(\varepsilon) \)
for some \(u \) and for some \(\delta > 0 \)? This problem is called the stability of the functional
transformation. A great deal of work has been done in connection with the ordinary
and partial differential equations. If \(f \) is a function from a normed vector space into
a Banach space, and \(\|f(x + y) - f(x) - f(y)\| \leq \varepsilon \), Hyers [3] proved that there exists
an additive map \(A \) such that \(\|f(x) - A(x)\| \leq \varepsilon \). If \(f(x) \) is a real continuous function
of \(x \) over \(\mathbb{R} \), and \(|f(x + y) - f(x) - f(y)| \leq \varepsilon \), it was shown by Hyers and Ulam [4]
that there exists a constant \(k \) such that \(|f(x) - kx| \leq 2\varepsilon \). Taking these results into
account, we say that the additive Cauchy equation \(f(x + y) = f(x) + f(y) \) is stable
in the sense of Hyers and Ulam.

In this paper, we study a generalized Hyers-Ulam stability of a mean value type
functional equation.

Let \(\mathbb{R} \) be the set of real numbers. For distinct points \(x_1, x_2, \ldots, x_n \) in \(\mathbb{R} \), the divided
difference of \(f : \mathbb{R} \to \mathbb{R} \) is recursively defined as
\[
\begin{align*}
f[x_1] &= f(x_1), \\
f[x_1, x_2, \ldots, x_n] &= \frac{f[x_1, x_2, \ldots, x_{n-1}] - f[x_2, x_3, \ldots, x_n]}{x_1 - x_n}.
\end{align*}
\]

(1.1)

Bailey [2], generalizing a result of Aczel [1], proved the following result: if \(f \) is a
differentiable function satisfying the functional equation
\[f(x_1, x_2, x_3) = h(x_1 + x_2 + x_3), \quad \forall x_1, x_2, x_3 \in \mathbb{R} \]

(1.2)

with \(x_1 \neq x_2, x_2 \neq x_3, x_3 \neq x_1 \), then \(f \) is a polynomial of degree at most three. In
Bailey’s proof, the differentiability assumption plays a central role. Kannappan and
Sahoo [5] have determined the general solution of \(f[x_1, x_2, \ldots, x_n] = h(x_1 + x_2 + \cdots + x_n) \)
without the differentiability assumption. In the next section, we determine the
general solution of (1.2) by an elementary method.
2. Solution of the functional equation (1.2). Now we give the solution of the function equation (1.2) using an elementary technique.

Theorem 2.1. Let \(f \) satisfy the functional equation (1.2) for all \(x_1, x_2, x_3 \in \mathbb{R} \) with \(x_1 \neq x_2, x_2 \neq x_3, \) and \(x_3 \neq x_1 \). Then \(f \) is a polynomial of degree at most three and \(h \) is linear.

Proof. If \(f(x) \) is a solution of (1.2) so is \(f(x) + a_0 + a_1x \), where \(a_0 \) and \(a_1 \) are arbitrary constants. This can be verified by direct substitution into the expansion of the functional equation (1.2), that is,

\[
(x_2 - x_3)f(x_1) + (x_3 - x_1)f(x_2) + (x_1 - x_2)f(x_3) = (x_1 - x_3)(x_1 - x_2)(x_2 - x_3)h(x_1 + x_2 + x_3).
\)

(2.1)

Letting \(f(x_i) + a_0 + a_1x_i \) for \(i = 1, 2, 3 \) for \(f(x_i) \) in the expansion (2.1), we get

\[
(x_2 - x_3)[f(x_1) + a_0 + a_1x_1] + (x_3 - x_1)[f(x_2) + a_0 + a_1x_2] + (x_1 - x_2)[f(x_3) + a_0 + a_1x_3] = (x_1 - x_3)(x_1 - x_2)(x_2 - x_3)h(x_1 + x_2 + x_3).
\)

(2.2)

Each term involving an \(a_0 \) or an \(a_1 \) has an opposite-sign term and therefore cancels by simple algebraic manipulation. Thus we have again the expanded form (2.1) of (1.2).

Let \(g(x) = f(x) + a_0 + a_1x \). Then \(x = 0 \) inserted into \(g(x) \) yields

\[
f(0) = g(0) - a_0.
\]

(2.3)

We are free to pick \(a_0 = g(0) \) so that \(g(x) \) yields \(f(0) = 0 \). In other words, by a suitable choice for \(a_0 \), without loss of generality, we may assume that

\[
f(0) = 0.
\]

(2.4)

Now by setting \(x = \alpha \) in the definition of \(g(x) \) we get

\[
f(\alpha) = g(\alpha) - a_0 - a_1\alpha.
\]

(2.5)

Letting \(a_0 + a_1\alpha = g(\alpha) \) we get \(f(\alpha) = 0 \) and we may assume, without loss of generality, that

\[
f(\alpha) = 0
\]

(2.6)

for some \(\alpha \neq 0 \) in \(\mathbb{R} \). Note that there are many choices for such an \(\alpha \).

First substitute \((x, 0, \alpha)\) for \((x_1, x_2, x_3)\) in (2.1) to get

\[
f(x) = -x(\alpha - x)h(x + \alpha)
\]

(2.7)

(after using (2.4) and (2.6)) for \(x \neq 0, \alpha \).

Next, we substitute \((x, 0, y)\) for \((x_1, x_2, x_3)\) in (2.1) to get

\[
\frac{f(x)}{x(x - y)} - \frac{f(y)}{y(x - y)} = h(x + y) \quad \forall x, y \neq 0, x \neq y.
\]

(2.8)
Define
\[g(x) = \frac{f(x)}{x} \quad \text{for } x \in \mathbb{R} \setminus \{0\}. \]

(2.9)

Then (2.8) reduces to
\[g(x) - g(y) = (x - y)h(x + y) \quad \forall x, y \in \mathbb{R} \setminus \{0\} \text{ with } x \neq y. \]

(2.10)

Note that (2.10) is valid even for \(x = y \).

Now we consider the equation
\[g(x) - g(y) = (x - y)h(x + y) \quad \forall x, y \in \mathbb{R} \setminus \{0\}. \]

(2.11)

Put \(y = -x \) in (2.10) to get
\[g(x) - g(-x) = 2xh(0) \quad \forall x \neq 0. \]

(2.12)

Next, replace \(y \) by \(-y\) in (2.10) to get
\[g(x) - g(-y) = (x + y)h(x - y) \quad \text{for } x, y \in \mathbb{R} \setminus \{0\} \text{ with } x + y \neq 0. \]

(2.13)

Again (2.13) holds if \(x + y = 0 \). Thus we conclude that (2.13) holds for \(x, y \in \mathbb{R} \setminus \{0\} \).

Subtract (2.10) from (2.13) and use (2.12) to get
\[(x + y)[h(x - y) - h(0)] = (x - y)[h(x + y) - h(0)] \quad \forall x, y \in \mathbb{R} \setminus \{0\}. \]

(2.14)

Fix a nonzero \(u \) in \(\mathbb{R} \). Choose a \(v \in \mathbb{R} \) such that \((u + v)/2 \neq 0 \) and \((u - v)/2 \neq 0 \). There are plenty of choices for such \(v \). Let
\[x = \frac{u + v}{2}, \quad y = \frac{u - v}{2}, \]

(2.15)

so that
\[u = x + y, \quad v = x - y. \]

(2.16)

Letting (2.16) into (2.14), we get
\[u[h(v) - h(0)] = v[h(u) - h(0)] \quad \forall v \neq u, -u. \]

(2.17)

(Here note that \(v \) can be zero since \(x = y \) is allowed.) Hence for fixed \(u = u_1 \), we get
\[h(v) = a_1v + b_1 \quad \text{for } v \in \mathbb{R} \setminus \{u_1, -u_1\}. \]

(2.18)

Again \(u = u_2 \), we get
\[h(v) = a_2v + b_2 \quad \forall v \in \mathbb{R} \setminus \{u_2, -u_2\}. \]

(2.19)

Since the sets \(\{u_1, -u_1\} \) and \(\{u_2, -u_2\} \) are disjoint, we get
\[h(v) = av + b \quad \forall v \in \mathbb{R}. \]

(2.20)

Now using (2.20) in (2.7), we have
\[f(x) = (x^2 - x\alpha)h(x + \alpha) = (x^2 - x\alpha)[a(x + \alpha) + b] = ax^3 + bx^2 + cx, \]

(2.21)
where \(c = -a\alpha^2 - b\alpha \). Removing the assumption that \(f(0) = 0 \), we get
\[
f(x) = ax^3 + bx^2 + cx + d \quad \forall x \neq 0, \alpha.
\]
(2.22)

By (2.4), (2.6), and (2.22), we conclude that \(f(x) \) is a polynomial of degree at most three for all \(x \in \mathbb{R} \). This proof is now complete.

For a more general result, the interested reader should refer to Kannappan and Sahoo [5].

3. Stability of the functional equation (1.2). Let \(G \) be an additive subgroup of \(\mathbb{C} \) and let \(\varphi : G^3 \to [0, \infty) \) be a control function. In the following theorem, the stability of (1.2) for cubic polynomials will be investigated in a modified form (3.1).

Theorem 3.1. Let \(\alpha \in G \setminus \{0\} \) and \(\beta \in G \setminus \{-\alpha, 0, \alpha\} \) be fixed. If the functions \(f, h : G \to \mathbb{C} \) satisfy the inequality
\[
\left| (y-z)f(x) + (z-x)f(y) + (x-y)f(z) \right| - (x-z)(x-y)(y-z)h(x+y+z) \leq \varphi(x,y,z), \quad \forall x,y,z \in G,
\]
(3.1)

then there exist constants \(a, b, c, d \) such that
\[
\left| f(x) - ax^3 - bx^2 - cx - d \right| \leq \frac{|x^2 - \alpha^2|}{2|\beta||\beta^2 - \alpha^2|} \varphi(x, \beta, -\beta) + \frac{|x^2 - \beta^2|}{2|\alpha||\beta^2 - \alpha^2|} \varphi(x, \alpha, -\alpha) \quad \forall x \in G,
\]
(3.2)

\[
|h(x) - ax - b| \leq \frac{|x^2 - \beta^2|}{2|\alpha||\beta^2 - \alpha^2|} \varphi(x, \alpha, -\alpha) + \frac{1}{2|\beta||\beta^2 - \alpha^2|} \varphi(x, \alpha, -\alpha) \quad \forall x \in G \setminus \{-\alpha, \alpha\}.
\]
(3.3)

Moreover, the constants \(a, b, c, d \) are explicitly given by
\[
a = \frac{f(\beta) - f(-\beta)}{2\beta(\beta^2 - \alpha^2)} - \frac{f(\alpha) - f(-\alpha)}{2\alpha(\beta^2 - \alpha^2)},
\]
\[
b = \frac{f(\beta) + f(-\beta)}{2(\beta^2 - \alpha^2)} - \frac{f(\alpha) + f(-\alpha)}{2(\beta^2 - \alpha^2)},
\]
\[
c = \frac{f(\alpha) - f(-\alpha)}{2\alpha(\beta^2 - \alpha^2)} \beta^2 - \frac{f(\beta) - f(-\beta)}{2\beta(\beta^2 - \alpha^2)} \alpha^2,
\]
\[
d = \frac{f(\alpha) + f(-\alpha)}{2(\beta^2 - \alpha^2)} \beta^2 - \frac{f(\beta) + f(-\beta)}{2(\beta^2 - \alpha^2)} \alpha^2.
\]
(3.4)

Proof. If we define a function \(g : G \to \mathbb{C} \) by
\[
g(x) = f(x) - \frac{f(\alpha) - f(-\alpha)}{2\alpha} x - \frac{f(\alpha) + f(-\alpha)}{2},
\]
(3.5)
A FUNCTIONAL EQUATION CHARACTERIZING CUBIC POLYNOMIALS...

then \(g(\alpha) = g(-\alpha) = 0 \) and \(g \) satisfies the inequality

\[
| (y - z)g(x) + (z - x)g(y) + (x - y)g(z) \\
- (x - z)(x - y)(y - z)h(x + y + z) | \leq \varphi(x, y, z) \quad \forall x, y, z \in G. \tag{3.6}
\]

If we substitute \((x, \alpha, -\alpha)\) for \((x, y, z)\) in (3.6), then we have

\[
| g(x) - (x^2 - \alpha^2)h(x) | \leq \frac{1}{2|\alpha|} \varphi(x, \alpha, -\alpha) \quad \forall x \text{ in } G. \tag{3.7}
\]

Replace \(z \) by \(-y \) in (3.6) to get

\[
| 2y^2g(x) - (x + y)g(y) + (x - y)g(-y) - 2y(x^2 - y^2)h(x) | \leq \varphi(x, y, -y) \tag{3.8}
\]

for every \(x, y \in G \).

By making use of (3.7) and (3.8), we obtain

\[
\begin{align*}
& \left| 2y^2g(x) - (x + y)g(y) + (x - y)g(-y) - 2y(x^2 - y^2)h(x) \right| \\
& \leq \left| 2y^2g(x) - (x + y)g(y) + (x - y)g(-y) - 2y(x^2 - y^2)h(x) \right| \\
& + \left| 2y^2 - \alpha^2 \right| \frac{2y(x^2 - y^2)}{x^2 - \alpha^2} g(x) \\
& \leq \varphi(x, y, -y) + \frac{|y|}{|\alpha|} \frac{x^2 - y^2}{x^2 - \alpha^2} \varphi(x, \alpha, -\alpha) \tag{3.9}
\end{align*}
\]

or equivalently

\[
\begin{align*}
& \left| 2y^2 - \alpha^2 \right| g(x) - (x + y)g(y) + (x - y)g(-y) \\
& \leq \varphi(x, y, -y) + \frac{|y|}{|\alpha|} \frac{x^2 - y^2}{x^2 - \alpha^2} \varphi(x, \alpha, -\alpha), \quad \forall x \in G \setminus \{-\alpha, \alpha\}, \forall y \in G. \tag{3.10}
\end{align*}
\]

Multiply both sides by

\[
\frac{|x^2 - \alpha^2|}{2|y||y^2 - \alpha^2|} \tag{3.11}
\]

to get

\[
\begin{align*}
& \left| g(x) - \frac{(x^2 - \alpha^2)(x + y)}{2y^2 - \alpha^2} g(y) + \frac{(x^2 - \alpha^2)(x - y)}{2y^2 - \alpha^2} g(-y) \right| \\
& \leq \frac{|x^2 - \alpha^2|}{2|y||y^2 - \alpha^2|} \varphi(x, y, -y) \\
& + \frac{|x^2 - \alpha^2|}{2|\alpha||y^2 - \alpha^2|} \varphi(x, \alpha, -\alpha) \quad \forall x \in G, \ y \in G \setminus \{-\alpha, 0, \alpha\}. \tag{3.12}
\end{align*}
\]

(We note that the inequality holds true also for \(x \in \{-\alpha, \alpha\} \).)

If we replace \(y \) in the last inequality by a constant \(\beta \in G \setminus \{-\alpha, 0, \alpha\} \) and if we consider definition (3.5), then we can easily show the validity of inequality (3.2) by making a tedious calculation.
By using (3.2), (3.5), and (3.7), we may obtain
\[
| (x^2 - \alpha^2) h(x) - ax^3 - bx^2 + \alpha^2 ax + \alpha^2 b |
\leq | (x^2 - \alpha^2) h(x) - g(x) |
+ | g(x) - f(x) + \frac{f(\alpha) - f(-\alpha)}{2\alpha} x + \frac{f(\alpha) + f(-\alpha)}{2} |
+ | f(x) - ax^3 - bx^2 - cx - d |
\leq \frac{|x^2 - \beta^2| + |\beta^2 - \alpha^2|}{2|\alpha||\beta^2 - \alpha^2|} \varphi(x,\alpha,-\alpha) + \frac{|x^2 - \alpha^2|}{2|\beta||\beta^2 - \alpha^2|} \varphi(x,\beta,-\beta) \quad \forall x \in G,
\] (3.13)
from which we can deduce inequality (3.3).

Corollary 3.2. Assume that the control function \(\varphi : G^3 \rightarrow [0,\infty) \) satisfies the asymptotic condition
\[
\lim_{|x| \rightarrow \infty} |x|^2 \varphi(x,y,-y) = 0 \quad \text{for each fixed } y \in G.
\] (3.14)
If the functions \(f, h : G \rightarrow \mathbb{C} \) satisfy inequality (3.1) for any \(x, y, z \in G \), then there exist uniquely determined constants \(a, b, c, d \) such that inequalities (3.2) and (3.3) are valid for all \(x \in G \) and for all \(x \in G \setminus \{-\alpha, \alpha\} \), respectively.

Corollary 3.3. Suppose that the control function \(\varphi : G^3 \rightarrow [0,\infty) \) is given by
\[
\varphi(x,y,z) = \varepsilon |x-y| |y-z| |z-x| \quad \text{for some given } \varepsilon > 0.
\] (3.15)
If the functions \(f, h : G \rightarrow \mathbb{C} \) satisfy inequality (3.1) for any \(x, y, z \in G \), then there exist constants \(a, b, c, d \) such that
\[
| f(x) - ax^3 - bx^2 - cx - d | \leq \frac{2\varepsilon}{|\beta^2 - \alpha^2|} |x^2 - \alpha^2| |x^2 - \beta^2|,
| h(x) - ax - b | \leq \varepsilon + \frac{2\varepsilon}{|\beta^2 - \alpha^2|} |x^2 - \beta^2| \quad \forall x \text{ of } G.
\] (3.16)
We remark here that the last inequality is also valid for \(x = -\alpha \) or \(x = \alpha \).

Given a control function \(\psi : G^3 \rightarrow [0,\infty) \), we can also prove the Hyers-Ulam-Rassias stability of the functional equation (1.2) in the original setting:

Theorem 3.4. Let \(\alpha \in G \setminus \{0\} \) and \(\beta \in G \setminus \{-\alpha, 0, \alpha\} \) be given. If the functions \(f, h : G \rightarrow \mathbb{C} \) satisfy the inequality
\[
| f(x,y,z) - h(x+y+z) | \leq \psi(x,y,z) \quad \forall x, y, z \in G \text{ with } x \neq y, y \neq z, z \neq x,
\] (3.17)
then there exist constants \(a, b, c, d \) such that
\[
| f(x) - ax^3 - bx^2 - cx - d | \leq \frac{|x^2 - \alpha^2|}{|\beta^2 - \alpha^2|} (\psi(x,\alpha,-\alpha) + \psi(x,\beta,-\beta)),
| h(x) - ax - b | \leq \psi(x,\alpha,-\alpha) + \frac{|x^2 - \beta^2|}{|\beta^2 - \alpha^2|} (\psi(x,\alpha,-\alpha) + \psi(x,\beta,-\beta)),
\] (3.18) (3.19)
for all \(x \in G \), where \(a, b, c, d \) are explicitly given in Theorem 3.1.
Proof. If we multiply both sides of (3.17) by \(|x - y||y - z||z - x|\), then \(f\) satisfies inequality (3.1) with

\[
\varphi(x, y, z) = |x - y||y - z||z - x|\psi(x, y, z) \quad \forall x, y, z \in G.
\]

(3.20)

(We note that (3.1) is also true for \(x, y, z \in G\) with \(x = y, y = z, \) or \(z = x\) for our case with (3.20).)

According to Theorem 3.1, there exist constants \(a, b, c, d\) such that inequalities (3.18) and (3.19) are valid for all \(x \in G\) and for all \(x \in G \setminus \{-\alpha, \alpha\}\), respectively. The only reason for excepting \(-\alpha\) and \(\alpha\) from the domain of validity of inequality (3.3) is that the denominator of the first term on the right-hand side contains a factor \(|x^2 - \alpha^2|\). However, inequality (3.19) contains no denominator which vanishes at \(x = \alpha\) or \(x = -\alpha\). Therefore, we can include \(-\alpha\) and \(\alpha\) in the domain of validity of inequality (3.19), which completes the proof.

References

Soon-Mo Jung: Mathematics Section, College of Science & Technology, Hong-Ik University, 339–701 Chochiwon, Korea

E-mail address: smjung@wow.hongik.ac.kr

Prasanna K. Sahoo: Department of Mathematics, University of Louisville, Louisville, KY 40292, USA

E-mail address: sahoo@louisville.edu
Special Issue on
Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/jamds/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>June 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>September 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>December 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be