A NEW COMBINATORIAL IDENTITY

JOSEPH SINYOR, TED SPEEVAK, and AKALU TEFERA

(Received 5 June 2000)

Abstract. We prove a combinatorial identity which arose from considering the relation
\[r_p(x, y, z) = (x + y - z)^p - (x^p + y^p - z^p) \]
in connection with Fermat’s last theorem.

2000 Mathematics Subject Classification. Primary 05-02.

The following combinatorial identity:
\[
\sum \sum \frac{1}{(m-l') \binom{m+l'-j'}{2l'-j'+1}} \binom{m-l'+j'-1}{j'} \binom{m-l'}{2(l-l')-(j-j')} \binom{j'}{j-j'} = \frac{1}{2(m-l)} \binom{2m}{2l+1} \binom{2l+1}{j} \frac{1}{(2l+1)} \binom{2m}{2l} \binom{2l+1}{j}
\]
for all \(m > l \geq 0 \), where \(m, l, \) and \(j \) are nonnegative integers and \(0 \leq j \leq 2l+1 \), arose from considering
\[r_p(x, y, z) = (x + y - z)^p - (x^p + y^p - z^p) \]
in connection with Fermat’s last theorem (FLT), which was proved in 1994 by Wiles and Taylor. Recall that FLT states that \(x^p + y^p - z^p \neq 0 \), where \(x, y, z, p \) are any nonzero integers and \(p > 2 \). We take, without loss of generality, that \(x, y, \) and \(z \) are relatively prime and \(p \) is prime. In general, \(r_p(x, y, z) \) can be factored as \(p(z-x)(z-y)(x+y)f_p(x, y, z) \) which are powers of \(p \) if \(x^p + y^p - z^p = 0 \). These factors result in the elementary Abel-Barlow relations known since the 1820’s (see [2]).

However, the last factor \(f_p(x, y, z) \) is
\[
\sum_{l=0}^{m-1} \sum_{i=0}^{2l} \sum_{j=0}^{l} \frac{(-1)^{l-j}}{(m-l) \binom{m-l+j}{2l-j+1}} \binom{m-l+j-1}{j} x^{2l-i} y^i(z-x)^{m-l-1}(z-y)^{m-l-1} = \begin{cases} p^{k-1} d^p, & p \nmid xyz, \\ d^p, & p \mid xyz, \end{cases}
\]
where \(p = 2m + 1 \geq 5 \) and \(k > 0 \). This formulation of \(f_p(x, y, z) \), which is believed to be novel, establishes the new identity. However, it appears to offer no new insights into a possible elementary proof of FLT.
To discover the identity, note that
\[
\rho_p(x, y, z) = p^{2m} \sum_{l=0}^{2m} \sum_{j=0}^{2m} \frac{(-1)^l}{p^l} \binom{p-l}{j} x^j y^{p-j-l} z^l, \tag{4}
\]
where \(j + l \neq 0 \).

Alternatively, we have
\[
\rho_p(x, y, z) = p^{m} \sum_{l'=0}^{m} (z-x)^{m-l'} (z-y)^{m-l'} \sum_{j'=0}^{2l'+1} a_{j', m-l'} x^{2l'-j'+1} y^{j'}. \tag{5}
\]

Equating (4) and (5) for a given \(j \) and \(l \), we get the recurrence
\[
a_{j, m-l} = \frac{1}{2(m-l)} \left(\frac{2m}{2l+1} \right) \left(\frac{2l+1}{j} \right) - \sum_{l' < j' < j} a_{j', m-l'} \left(\frac{m-l'}{2(l-l') - (j-j')} \right) \left(\frac{m-l'}{j-j'} \right). \tag{6}
\]

Now,
\[
a_{j, m-l} = \frac{1}{(m-l)} \left(\frac{m+l-j}{2l-j+1} \right) \left(\frac{m-l+j-1}{j} \right) \tag{7}
\]
satisfies the recurrence (6). Substituting the expression for \(a_{j, m-l} \) and rearranging, we obtain the new identity.

The authors have reviewed the literature, notably Gould [1] and Riordan [3] as well as the relevant journals since 1980. Based on this review, (1) is believed to be novel.

Proof of the identity. We consider two special cases.

Case 1 \((j = 0)\). Equation (1) reduces to:
\[
\sum_{0 \leq l' \leq l} \frac{1}{m-l'} \left(\frac{m+l'}{2l'+1} \right) \left(\frac{m-l'}{2l-2l'} \right) = \frac{1}{2l+1} \left(\frac{2m}{2l} \right). \tag{8}
\]
Divide both sides of (8) by the right-hand side and denote the resulting left-hand side by \(S(m, l) \). Then \(S(m, l) \) satisfies the recurrence equation \(S(m+1, l) - S(m, l) = 0 \)—obtained by using Zeilberger’s [5] Ekhad, a computer algebra package which is available from http://www.math.temple.edu/~zeilberg/—and hence the identity follows from the fact that \(S(1, l) = 1 \).

Case 2 \((j \neq 0)\). Equation (1) reduces to
\[
\sum_{l' j'} \left(\frac{m+l'-j'}{2l'-j'+1} \right) \left(\frac{m-l'+j'}{j-1} \right) \left(\frac{m-l'}{2(l-l') - (j-j')} \right) \left(\frac{j}{j'} \right) = \left(\frac{2m}{2l} \right) \left(\frac{2l}{j-1} \right), \tag{9}
\]
which by multiplying both sides by \((2l - j + 1)/j \) is also expressible as
\[
\sum_{l' j'} \left(\frac{m-1-l'+j'}{j'} \right) \left(\frac{m-l'}{j-j'} \right) \left(\frac{m-l'}{2l-j} \right) \left(\frac{2l-j+1}{2l'-j'+1} \right) = \left(\frac{2m}{2l} \right) \left(\frac{2l}{j} \right) = \left(\frac{2m}{j, 2l-j} \right), \tag{10}
\]
where
\[
\left(\begin{array}{c} a \\ b, c \end{array} \right) := \frac{a!}{b!c!(a-b-c)!}. \tag{11}
\]
Equation (10) follows from the identity
\[
\sum_{l'} \sum_{j'} \left(p - 1 - l' + j' \right) \left(p - l' \right) \left(m + l' - j' \right) \left(m + l' - j' \right) \left(m + p \right) = \left(m + p \right) \]
with \(p = m \) and \(k = 2l - j \).

Denote the left-hand side of (12) by \(S(m, p, j, k) \). \(S(m, p, j, k) \) satisfies \(S(m+1, p, j, k) = S(m, p, j, k) \) and hence \(S(m, p, j, k) = S(m+p, 0, j, k) \). Hence to prove (12) it suffices to prove
\[
S(n, 0, j, k) = \binom{n}{j, k} \quad \forall \ n, j, k \in \mathbb{Z}_{\geq 0}. \quad (13)
\]
Clearly (13) is true for \(n = 0 \). Now, let \(n > 0 \) and set \(S(n, j, k) := S(n, 0, j, k) \). Then \(S(n, j, k) \) satisfies the recurrence equation
\[
(-1 + j - n) S(n - 1, j - 1, k) - (1 + k) S(n - 1, j, k - 1) \\
+ (j - k - n - 1) S(n - 1, j, k) + (j + k - n - 1) S(n, j - 1, k) \\
+ (k + 1) S(n, j - 1, k + 1) + (j + 2k - n + 1) S(n, j, k) + 2(1 + k) S(n, j, k + 1) = 0
\]
that is obtained by using Wegschaider's [4] MultiSum, a computer algebra package which is available from http://www.risc.uni-linz.ac.at/research/combinat/risc/software/. Note that the right-hand side of (13) also satisfies (14). Hence by induction it follows that
\[
S(n, j, k) = \binom{n}{j, k} \quad \forall \ n, j, k \in \mathbb{Z}_{\geq 0}. \quad (15)
\]
\[\square\]

REFERENCES

Special Issue on
Boundary Value Problems on Time Scales

Call for Papers

The study of dynamic equations on a time scale goes back
to its founder Stefan Hilger (1988), and is a new area of
still fairly theoretical exploration in mathematics. Motivating
the subject is the notion that dynamic equations on time
scales can build bridges between continuous and discrete
mathematics; moreover, it often reveals the reasons for the
discrepancies between two theories.

In recent years, the study of dynamic equations has led
to several important applications, for example, in the study
of insect population models, neural network, heat transfer,
and epidemic models. This special issue will contain new
researches and survey articles on Boundary Value Problems
on Time Scales. In particular, it will focus on the following
topics:

- Existence, uniqueness, and multiplicity of solutions
- Comparison principles
- Variational methods
- Mathematical models
- Biological and medical applications
- Numerical and simulation applications

Before submission authors should carefully read over the
journal’s Author Guidelines, which are located at http://www
.hindawi.com/journals/ade/guidelines.html. Authors should
follow the Advances in Difference Equations manuscript
format described at the journal site http://www.hindawi
.com/journals/ade/. Articles published in this Special Issue
shall be subject to a reduced Article Processing Charge of
$200 per article. Prospective authors should submit an elec-
tronic copy of their complete manuscript through the journal
Manuscript Tracking System at http://mts.hindawi.com/
according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>April 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>July 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>October 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor
Alberto Cabada, Departamento de Análise Matemática,
Universidade de Santiago de Compostela, 15782 Santiago de
Compostela, Spain; alberto.cabada@usc.es

Guest Editor
Victoria Otero-Espinar, Departamento de Análise
Matemática, Universidade de Santiago de Compostela,
15782 Santiago de Compostela, Spain;
mvictoria.otero@usc.es