SUPERCONVERGENCE OF FINITE ELEMENT METHOD
FOR PARABOLIC PROBLEM

DO Y. KWAK, SUNGYUN LEE, and QIAN LI

(Received 22 October 1998)

ABSTRACT. We study superconvergence of a semi-discrete finite element scheme for parabolic problem. Our new scheme is based on introducing different approximation of initial condition. First, we give a superconvergence of \(u_h - R_h u_t \), then use a postprocessing to improve the accuracy to higher order.

Keywords and phrases. Superconvergence, parabolic problem, postprocessing.

2000 Mathematics Subject Classification. Primary 65N15; Secondary 65N30.

1. Introduction. We consider the following parabolic problem:

\[
\begin{align*}
 u_t - \Delta u &= f \quad \text{in } \Omega, \quad \text{for } t > 0, \\
 u &= 0 \quad \text{on } \partial \Omega, \quad \text{for } t \geq 0, \\
 u(\cdot,0) &= v \quad \text{in } \Omega,
\end{align*}
\]

(1.1)

where \(\Omega \subset \mathbb{R}^2 \) is a domain with smooth boundary. Suppose we are given a family \(\mathcal{T}_h \) of quasi-uniform triangulation of \(\Omega \), whose maximum diameter is denoted by \(h \). Let \(S_h \subset H^1_0(\Omega) \) be a standard finite element space consisting of continuous, piecewise polynomial of degree \(k \). Define an elliptic projection \(R_h : H^1_0(\Omega) \to S_h \) by

\[
(\nabla (R_h w - w), \nabla \chi) = 0 \quad \forall \chi \in S_h.
\]

(1.2)

We consider the following map \(u_h(t) : [0,T] \to S_h \) defined by

\[
(u_{h,t}, \chi) + (\nabla u_h, \nabla \chi) = (f, \chi), \quad u_h(0) = v_h,
\]

(1.3)

where \(v_h \) is determined by

\[
(\nabla v_h, \nabla \chi) = (f(0), \chi) - (R_h u_t(0), \chi) \quad \forall \chi \in S_h,
\]

(1.4)

and \(u_t(0) \) is determined by (1.1). Superconvergence of finite element for parabolic problem has been studied by many authors. For example, Thomeé [8], Chen and Huang [1] studied superconvergence of the gradient in \(L^2 \) norm while Thomeé et al. [9] studied maximum norm superconvergence of gradient for linear finite element. Superconvergence of the lumped finite element method for linear and nonlinear parabolic problems were studied in [2] and [6], respectively. In this paper, we introduce a different way of approximating the initial condition, namely (1.4) and investigate the superconvergence of finite element for parabolic problem using any order element.
To do so, we decompose the error as $$u_h - u = u_h - R_h u + R_h u - u = \theta + \rho$$ and estimate $$\theta$$ in a superconvergent order. Next, a postprocessing technique used in [4, 5] is employed to obtain higher order convergence. The rest of the paper is organized as follows. In Section 2, we show $$\theta$$ in $$L^2$$ and $$H^1$$ norm when $$k > 1$$. For $$\theta$$, the superconvergence in $$L^\infty$$ and $$W^{1,\infty}$$ norm are also considered. In Section 3, the case $$k = 1$$ is considered. The superconvergence of $$\theta_t$$ in $$H^1$$ and $$\theta$$ in $$W^{1,\infty}$$ norm are shown. In Section 4, $$W^{l,p}, l = 0, 1, (2 < p < \infty)$$ norm estimates are shown. Finally, in Section 5, we give some applications of the results obtained in Sections 2, 3 and 4. For example, a postprocessing technique is employed to obtain second-order superconvergence for gradient and first-order for the solution when $$k > 1$$. First-order superconvergence is shown when $$k = 1$$.

2. Superconvergence in $$L^2, H^1, L^\infty$$, and $$W^{1,\infty}$$ norm. We recall $$\rho = R_h u - u$$ and $$\theta = u_h - R_h u$$.

Lemma 2.1. Let $$1 < p < \infty$$, $$\left(\frac{1}{p}\right) + \left(\frac{1}{p^{'}}\right) = 1$$. Then for any $$g \in W^{1,p^{'}}(\Omega)$$, we have, for $$k > 1$$,

$$\left|(D_t^i \rho, g)\right| \leq C h^{k+2} \|D_t^i u\|_{k+1,p} \|g\|_{1,p^{'}}. \quad (2.1)$$

where $$D_t^i = \frac{\partial^i}{\partial t^i}$$.

Proof. It suffices to prove the case for $$s = 0$$. From standard finite element theory,

$$\|\rho\|_{1,p} \leq C h^k \|u\|_{k+1,p}. \quad (2.2)$$

Consider the dual problem: given $$g \in L^p(\Omega)$$, find $$w \in W^{3,p^{'}}(\Omega) \cap W^{1,p^{'}}(\Omega)$$ satisfying

$$\langle \nabla v, \nabla w \rangle = \langle g, v \rangle, \quad \forall v \in H^1_0(\Omega), \quad (2.3)$$

$$\|w\|_{3,p^{'}} \leq C \|g\|_{1,p^{'}}. \quad (2.4)$$

Let $$\Pi_h$$ denote the $$S_h$$ interpolation operator. Then by (2.3), (1.2), (2.2), (2.4), and the property of interpolation, we have

$$\langle g, \rho \rangle = \langle \nabla \rho, \nabla w \rangle = \|\nabla \rho, \nabla (w - \Pi_h w)\| \leq \|\rho\|_{1,p} \|w - \Pi_h w\|_{1,p^{'}} \leq C h^k \|u\|_{k+1,p} h^2 \|w\|_{3,p^{'}} \quad (2.5)$$

$$\leq C h^{k+2} \|u\|_{k+1,p} \|g\|_{1,p^{'}}. \quad \square$$

Lemma 2.2. We have

(i) $$\theta_t(0) = 0$$, i.e., $$u_{h,t}(0) = R_h u_t(0)$$.

(ii) $$\|\theta(0)\|_1 \leq C h^{k+2} \|u_t(0)\|_{k+1}$$.

Proof. From (1.4) and (1.3),

$$(R_h u_t(0), \chi) = (f(0), \chi) - (v_h, \nabla \chi) = (u_{h,t}(0), \chi), \quad \chi \in S_h. \quad (2.6)$$

Hence $$R_h u_t(0) = u_{h,t}(0)$$. For (ii), we see from (1.1),

$$(u_t, v) + (\nabla u, \nabla v) = (f, v). \quad (2.7)$$
Subtraction of (1.3) from (2.7), and noting (1.2), give
\[(\theta_t, \chi) + (\nabla \theta, \nabla \chi) = -(\rho_t, \chi), \quad \chi \in S_h. \tag{2.8} \]

Set \(t = 0 \) and noting that \(\theta_t(0) = 0 \), we have
\[(\nabla \theta(0), \nabla \chi) = -(\rho_t(0), \chi). \tag{2.9} \]

Take \(\chi = \theta(0) \) in (2.9). Then we see from Lemma 2.1,
\[||\nabla \theta(0)||^2 = |(\rho_t(0), \theta(0))| \leq Ch^{k+2}||u_t(0)||_{k+1}||\theta(0)||_1. \tag{2.10} \]

Since \(|\cdot|\) and \(||\cdot||\) are equivalent in \(H^1(\Omega) \),
\[||\theta(0)||_1 \leq C||\nabla \theta(0)|| \leq Ch^{k+2}||u_t||_{k+1}. \tag{2.11} \]

Theorem 2.3. We have first-order superconvergence for \(||\theta_t|| \) and second-order superconvergence for \(||\nabla \theta_t|| \). In other words,
\[||\theta_t(t)|| + \left(\int_0^t ||\nabla \theta_t||^2 \, d\tau \right)^{1/2} \leq Ch^{k+2} \left(\int_0^t ||u_{tt}(\tau)||_{k+1}^2 \, d\tau \right)^{1/2}. \tag{2.12} \]

Proof. Differentiating error equation (2.8),
\[(\theta_{tt}, \chi) + (\nabla \theta_t, \nabla \chi) = -(\rho_{tt}, \chi), \quad \chi \in S_h. \tag{2.13} \]

Take \(\chi = \theta_t \). Then by Lemma 2.1, we have
\[\frac{1}{2} \frac{d}{dt} ||\theta_t||^2 + ||\nabla \theta_t||^2 = |(\rho_{tt}, \theta_t)| \leq Ch^{k+2}||u_t||_{k+1}||\theta_t||_1 \]
\[\leq Ch^{2(k+2)}||u_{tt}||_{k+1} + \frac{1}{2} ||\nabla \theta_t||^2, \tag{2.14} \]

where arithmetic-geometric inequality was used in the last line. Elimination of \((1/2)||\nabla \theta_t||^2\) and integration, give, by Lemma 2.2(i),
\[||\theta_t(t)||^2 + \int_0^t ||\nabla \theta_t(\tau)||^2 \, d\tau \leq ||\theta_t(0)||^2 + Ch^{2(k+2)} \int_0^t ||u_{tt}(\tau)||_{k+1}^2 \, d\tau \]
\[\leq Ch^{2(k+2)} \int_0^t ||u_{tt}(\tau)||_{k+1}^2 \, d\tau. \tag{2.15} \]

Theorem 2.4. We have second-order superconvergence for \(||\theta_t||_1 \) and first-order for \(||\theta_{tt}|| \),
\[\left(\int_0^t ||\theta_{tt}||^2 \, d\tau \right)^{1/2} + ||\theta_t(t)||_1 \leq Ch^{k+2} \left[||u_{tt}(t)||_{k+1} + \left(\int_0^t ||u_{ttt}(\tau)||_{k+1}^2 \, d\tau \right)^{1/2} \right]. \tag{2.16} \]
\textbf{Proof.} From (2.13) with $\chi = \theta_{tt}$,
\[||\theta_{tt}||^2 + \frac{1}{2} \frac{d}{dt} ||\nabla \theta||^2 = - (\rho_{tt}, \theta_{tt}). \tag{2.17}\]
Integration, and noting that $\theta_t(0) = 0$, gives
\[\int_0^t ||\theta_{tt}||^2 d\tau + \frac{1}{2} ||\nabla \theta||^2 = - \int_0^t (\rho_{tt}, \theta_{tt}) d\tau = - (\rho_{tt}, \theta_t) \tag{2.18}\]
Using Lemma 2.1, left-hand side of (2.18) is
\[\leq Ch^{k+2} ||u_{tt}||_{k+1} ||\theta_t||_1 + Ch^{k+2} \int_0^t ||u_{ttt}||_{k+1} ||\theta_t||_1 d\tau \leq Ch^{2(k+2)} ||u_{tt}||_{k+1}^2 + C \int_0^t ||\theta_t||_1^2 d\tau. \tag{2.19}\]
Elimination of $\frac{1}{4} ||\theta_t||_1^2$ and usage of Gronwall inequality give (2.16).

\textbf{Theorem 2.5.} We have second-order superconvergence for $||\theta||_1$.
\[||\theta(t)||_1 \leq Ch^{k+2} \left[||u_t(0)||_{k+1} + \left(\int_0^t ||u_{tt}||_{k+1}^2 d\tau \right)^{1/2} \right]. \tag{2.20}\]
\textbf{Proof.} By Lemma 2.2 and Theorem 2.3, we have
\[||\theta(t)||_1 \leq ||\theta(0)||_1 + \int_0^t ||\theta_t||_1 d\tau \leq ||\theta(0)||_1 + C \left(\int_0^t ||\theta_t||_1^2 d\tau \right)^{1/2} \tag{2.21}\]
\leq Ch^{k+2} ||u_t(0)||_{k+1} + Ch^{k+2} \left(\int_0^t ||u_{tt}||_{k+1}^2 d\tau \right)^{1/2}. \tag{2.22}\]
\textbf{Theorem 2.6.} We have first-order superconvergence for $||\theta||$.
\[||\theta(t)|| \leq Ch^{k+2} \left[||u_t(0)||_{k+1} + \left(\int_0^t ||u_{tt}||_{k+1}^2 d\tau \right)^{1/2} \right]. \tag{2.23}\]
\textbf{Proof.} Recall that error equation (2.8)
\[(\theta_t, \chi) + (\nabla \theta, \nabla \chi) = - (\rho_t, \chi). \tag{2.24}\]
Take $\chi = \theta$ in (2.8). Then we see from Lemma 2.1,
\[\frac{1}{2} \frac{d}{dt} ||\theta(t)||^2 + ||\nabla \theta||^2 = - (\rho_t, \theta) \leq Ch^{k+2} ||u_t||_{k+1} ||\theta||_1 \leq Ch^{2(k+2)} ||u_t||_{k+1}^2 + ||\nabla \theta||^2. \tag{2.25}\]
Elimination of $\|\nabla \phi\|^2$ and integration, give, by Lemma 2.2,

$$\|\theta(t)\|^2 \leq \|\theta(0)\|^2 + ch^{2(k+2)} \int_0^t \|u_{tt}\|_{k+1}^2 \, d\tau$$

$$\leq Ch^{2(k+2)} \|u_{tt}(0)\|^2 + ch^{2(k+2)} \int_0^t \|u_{tt}\|_{k+1}^2 \, d\tau. \quad (2.25)$$

Now we study L^∞, $W^{1,\infty}$ superconvergence. First we need Green’s functions. The discrete Green’s function $G_h^z \in S_h$ for $z \in \Omega$ is defined by

$$(\nabla G_h^z, \nabla \chi) = \chi(z), \quad \chi \in S_h. \quad (2.26)$$

The derivative type Green’s function $g_{h,i}^z \in S_h, (i = 1, 2)$ is defined by

$$(\nabla g_{h,i}^z, \nabla \chi) = \frac{\partial}{\partial x_i} \chi(z), \quad \chi \in S_h. \quad (2.27)$$

Green’s functions posses the following properties (see [9, 10]).

Lemma 2.7. We have

$$\|G_h^z\| + \|G_h^z\|_{1,p'} \leq C, \quad 1 \leq p' < 2, \quad (2.28)$$

$$\|g_{h,i}^z\|^2 + \|g_{h,i}^z\|_{1,1} \leq C \log \frac{1}{h}. \quad (2.29)$$

Theorem 2.8. We have the following estimate:

$$\|\theta(t)\|_{0,\infty} \leq Ch^{k+2} \left[\|u_{tt}(t)\|_{k+1,p} + \left(\int_0^t \|u_{tt}\|_{k+1}^2 \, d\tau\right)^{1/2}\right], \quad p > 2. \quad (2.30)$$

Proof. By taking $\chi = \theta$ in the definition (2.26), we have by (2.8), Lemmas 2.1, 2.7, and Theorem 2.3,

$$|\theta(z,t)| = |(\nabla G_h^z, \nabla \theta)| = |(\rho_t, G_h^z) + (\theta_t, G_h^z) |$$

$$\leq Ch^{k+2} \|u_{tt}\|_{k+1,p} \|G_h^z\|_{1,p'} + \|\theta_t\| \|G_h^z\|$$

$$\leq Ch^{k+2} \|u_{tt}\|_{k+1,p} + Ch^{k+2} \left(\int_0^t \|u_{tt}\|_{k+1}^2 \, d\tau\right)^{1/2}. \quad (2.31)$$

Now take supremum over all $z \in \Omega$. \hfill \square

Theorem 2.9. We have the following estimate:

$$\|\theta(t)\|_{1,\infty} \leq Ch^{k+2-\epsilon} \left[\|u_{tt}\|_{k+1,p} + \left(\int_0^t \|u_{tt}\|_{k+1}^2 \, d\tau\right)^{1/2}\right], \quad (2.32)$$

for any $\epsilon > 2/p, \ p < \infty$ large enough.
For $z \in \Omega$, we see from (2.27), (2.8), Lemma 2.7, and Theorem 2.3,
\[
\left| \frac{\partial}{\partial x_i} \theta(z) \right| = \left| (\nabla g_{h,i}, \nabla \theta) \right| = |(\rho_t, g_{h,i}^x) + (\theta_t, g_{h,i}^z)|
\leq Ch^{k+2}||u_t||_{k+1,p}||g_{h,i}^x||_{1,p'} + ||\theta_t||||g_{h,i}^z||
\leq Ch^{k+2/p}||u_t||_{k+1,p}||g_{h,i}^x||_{1,1} + Ch^{k+2} \left(\int_0^t ||u_{tt}||_{k+1}^2 d\tau \right)^{1/2} ||g_{h,i}^z||
\leq Ch^{k+2}(\int_0^t ||u_{tt}||_{k+1}^2 d\tau)^{1/2} ||g_{h,i}^z||,
\] (2.33)
where inverse estimate
\[
||g_{h,i}^x||_{1,p'} \leq Ch^{-2/p'}||g_{h,i}^x||_{1,1}, \quad 1 \leq p' < 2, \ 2 < p \leq \infty
\] (2.34)
was used in the second inequality.

3. The case $k = 1$. Here the corresponding finite element space S_h is a linear finite element space. We make suitable modification of Lemma 2.2 to obtain the following lemma.

Lemma 3.1.
\[
||\theta(0)||_1 \leq Ch^2 ||u_t(0)||_2.
\] (3.1)

Proof. We recall (2.9)
\[
(\nabla \theta(0), \nabla \chi) = -(\rho_t(0), \chi), \quad \chi \in S_h
\] (3.2)
Take $\chi = \theta(0)$. Then, we see that
\[
||\nabla \theta(0)||^2 = |(\rho_t(0), \chi(0))| \leq ||\rho_t(0)|| \cdot ||\theta(0)|| \leq Ch^2 ||u_t(0)||_2 \cdot ||\nabla \theta(0)||.
\] (3.3)

Theorem 3.2. We have
\[
||\theta_t(t)|| + \left(\int_0^t ||\nabla \theta_t||^2 d\tau \right)^{1/2} \leq Ch^2 \left(\int_0^t ||u_{tt}||^2 d\tau \right)^{1/2}.
\] (3.4)

Proof. We recall (2.13)
\[
(\theta_{tt}, \chi) + (\nabla \theta_t, \nabla \chi) = -(\rho_{tt}, \chi), \quad \chi \in S_h.
\] (3.5)
Taking $\chi = \theta_t$, we see that
\[
\frac{1}{2} \frac{d}{dt} ||\theta_t||^2 + ||\nabla \theta_t||^2 \leq C ||\rho_{tt}|| \cdot ||\theta_t||
\leq Ch^2 ||u_{tt}||_2 ||\nabla \theta_t||
\leq Ch^4 ||u_{tt}||_2^2 + \frac{1}{2} ||\nabla \theta_t||^2.
\] (3.6)
Elimination of $(1/2)||\nabla \theta_t||^2$ and integration, give the result. \qed
Corollary 3.3. We have

\[||\theta(t)||_1 \leq Ch^2 \left(\int_0^t ||u_{tt}||_2^2 \, d\tau \right)^{1/2}. \] \hspace{1cm} (3.7)

Theorem 3.4. We have

\[\left(\int_0^t ||\theta_{tt}||_2^2 \, d\tau \right)^{1/2} + ||\theta_t(t)||_1 \leq Ch^2 \left[||u_{tt}(t)||_2 + \left(\int_0^t ||u_{ttt}||_2^2 \, d\tau \right)^{1/2} \right]. \] \hspace{1cm} (3.8)

Proof. Taking \(\chi = \theta_{tt} \) in (2.13), we see that

\[||\theta_{tt}||^2 + \frac{1}{2} \frac{d}{dt} ||\nabla \theta_t||^2 = - (\rho_{tt}, \theta_{tt}). \] \hspace{1cm} (3.9)

Integrating and noting \(\theta_t(0) = 0 \), we have

\[\int_0^t ||\theta_{tt}||^2 \, d\tau + \frac{1}{2} ||\nabla \theta_t||^2 = - \int_0^t (\rho_{tt}, \theta_{tt}) \, dt \]

\[= - (\rho_{tt}, \theta_t) + \int_0^t (\rho_{ttt}, \theta_t) \, d\tau \]

\[\leq ||\rho_{tt}|| \cdot ||\theta_t|| + \int_0^t ||\rho_{ttt}|| \cdot ||\theta_t|| \, d\tau \]

\[\leq Ch^2 ||u_{tt}||_2 \cdot ||\theta_t|| + ch^2 \int_0^t ||u_{ttt}||_2 \cdot ||\theta_t|| \, d\tau \]

\[\leq Ch^4 ||u_{tt}||_2 + \frac{1}{4} ||\nabla \theta_t||^2 + ch^4 \int_0^t ||u_{ttt}||_2 \, d\tau + \int_0^t ||\nabla \theta_t||^2 \, d\tau. \] \hspace{1cm} (3.10)

Now Gronwall inequality gives the result.

Lemma 3.5. For \(1 < p < 2 \), we have the following estimate:

\[||\nabla g_{h,i}^x||_{0,p} \leq C \text{ for } i = 1, 2. \] \hspace{1cm} (3.11)

Proof. Let \((1/p) + (1/p') = 1 \). For any \(\phi \in L^{p'}(\Omega) \), let \(\Psi \) be the solution of

\[-\Delta \Psi = \phi \quad \text{in } \Omega, \quad \Psi = 0 \quad \text{on } \partial \Omega. \] \hspace{1cm} (3.12)

Then we have

\[||\Psi||_{2,p'} \leq C ||\phi||_{0,p'}. \] \hspace{1cm} (3.13)

Setting \(g_h = g_{h,i}^x \), we have, by (3.12), (1.2), and (2.27),

\[(g_h, \phi) = (\nabla g_h, \nabla \Psi) = (\nabla g_h, \nabla R_h \Psi) = \frac{\partial}{\partial x_i} R_h \Psi(z). \] \hspace{1cm} (3.14)

Thus, we see from \(W^{1,\infty} \) stability of \(R_h \), imbedding theorem and (3.13) that

\[(g_h, \phi) \leq ||R_h \Psi||_{1,\infty} \leq C ||\Psi||_{1,\infty} \leq C ||\Psi||_{2,p'} \leq C ||\phi||_{0,p'}. \] \hspace{1cm} (3.15)

we have

\[||g_h||_{0,p} = \sup_{\phi \in L^{p'}(\Omega)} \frac{(g_h, \phi)}{||\phi||_{0,p'}} \leq C. \] \hspace{1cm} (3.16)
Theorem 3.6. We have
\[\| \theta(t) \|_{1,\infty} \leq Ch^2 \left[\| u_t(t) \|_{2,p} + \| u_{tt}(t) \|_2 + \left(\int_0^t \| u_{ttt} \|_2^2 \, d\tau \right)^{1/2} \right], \quad p > 2. \] (3.17)

Proof. Setting \(\chi = g_{h,i}^x \) in (2.8), we obtain by (2.27), (3.11) and imbedding theorem, we have
\[\frac{\partial}{\partial x_i} \theta(z,t) \leq (u_t - u_{h,t}, g_{h,i}^x) \leq (\| \rho_t \|_{0,p} + \| \theta_t \|_{0,p}) \| g_{h,i}^x \|_{0,p'}, (1/p) + (1/p') = 1 \] (3.18)
\[\leq C(\| \rho_t \|_{0,p} + \| \theta_t \|_1). \]
By standard estimate, we have
\[\| \rho_t \|_{0,p} \leq Ch^2 \| u_t \|_{2,p}. \] (3.19)
Combining (3.8), (3.19) with (3.18), we obtain the desired result. \(\square \)

Corollary 3.7. We have
\[\| \theta(t) \|_{0,\infty} \leq Ch^2 \left[\| u_t(t) \|_{2,p} + \| u_{tt}(t) \|_2 + \left(\int_0^t \| u_{ttt} \|_2^2 \, d\tau \right)^{1/2} \right], \quad p > 2. \] (3.20)

4. Superconvergence in \(L^p \) and \(W^{1,p} \), \(2 < p < \infty \)

Theorem 4.1. We have
\[\| \theta \|_{0,p} \leq Ch^{k+2} \left[\| u_t(0) \|_{k+1} + \left(\int_0^t \| u_{tt} \|_{k+1}^2 \, d\tau \right)^{1/2} \right], \quad k > 1. \] (4.1)

Proof. From Sobolev inequality, we have, for \(2 < p < \infty \),
\[\| \chi \|_{0,p} \leq C \| \chi \|_1, \quad \chi \in S_h. \] (4.2)
The conclusion directly follows from Theorem 2.5. \(\square \)

Theorem 4.2. We have
\[\| \theta(t) \|_{1,p} \leq Ch^{k+2} \left[\| u_t(t) \|_{k+1,p} + \left(\int_0^t \| u_{tt} \|_{k+1}^2 \, d\tau \right)^{1/2} \right], \quad k > 1, \] (4.3)
\[\| \theta(t) \|_{1,p} \leq Ch^2 \left[\| u_t(t) \|_{2,p} + \| u_{tt}(t) \|_2 + \left(\int_0^t \| u_{ttt} \|_2^2 \, d\tau \right)^{1/2} \right], \quad k = 1. \] (4.4)

Proof. Let \(p(2 < p < \infty) \) and \(p' \) be conjugate indices, and let \(\phi \in L^{p'}(\Omega) \) with \(\| \phi \|_{0,p'} = 1 \) and \(\phi_x \) be any component of \(\nabla \phi \). If \(\psi \) is the solution of
\[(\nabla \psi, \nabla \psi) = -(\phi_x, \psi), \quad \forall \psi \in H^1_0(\Omega) \] (4.5)
with the regularity property [7]
\[\|\psi\|_{1,p'} \leq C_p \|\phi\|_{0,p'} = C_p. \] (4.6)

Then by Green’s formula, equations (4.5), (1.2), (2.8), Lemma 2.1, Theorem 2.3, Sobolev lemma, and (4.6), we have
\[
(\theta_x, \phi) = -(\phi_x, \theta) = (\nabla \theta, \nabla \psi) = (\nabla \theta, \nabla R_h \psi) = -(\rho_t, R_h \psi) - (\theta_t, R_h \psi)
\leq Ch^{k+2} \|u_t(t)\|_{k+1,p} \|R_h \psi\|_{1,p'} + \|\theta_t(t)\| \|R_h \psi\|^{1/2}
\leq Ch^{k+2} \left[\|u_t(t)\|_{k+1,p} + \left(\int_0^t \|u_{tt}\|_{k+1}^2 d\tau \right)^{1/2} \right] \|R_h \psi\|_{1,p'}
\leq Ch^{k+2} \left[\|u_t(t)\|_{k+1,p} + \left(\int_0^t \|u_{tt}\|_{k+1}^2 d\tau \right)^{1/2} \right].
\] (4.7)

Now noting that
\[\|\theta_x\|_{0,p} = \sup_{\psi \in \mathbb{L}^p' (\Omega)} (\theta_x, \phi), \|\phi\|_{0,p'} = 1, \] (4.8)
the conclusion (4.3) is obtained. To prove (4.4), we note that
\[\|\theta\|_{1,p} \leq C \|\theta\|_{1,\infty}. \] (4.9)
This, together with (3.17), proves the theorem.

5. Application. We now give an application of the results derived in Sections 2 and 3.

As an example, let \(T_h \) be a quasi-uniform rectangular partition of \(\Omega \subset \mathbb{R}^2 \) and let \(S_h \) be the space of continuous piecewise polynomials
\[S_h = \{ v \in H_0^1(\Omega), v \in Q^k(\tau), \tau \in T_h \}, \] (5.1)
where
\[Q^k = \text{span} \{ x_i^j x_j^l, 0 \leq i, j \leq k \}. \] (5.2)

Introduce two kinds of operators (see [3, 4]), the vertices-edges-element interpolation \(i_h^k \) and the high-interpolation operator \(I_{2h}^{k+l}(l = 1,2) \). They satisfy the following properties:
\[
\|u - I_{2h}^{k+l} u\|_{m,p} \leq Ch^{k+1-l-m} \|u\|_{k+l-1,p}, \quad 1 \leq k, m = 0,1, (2 \leq p \leq \infty), l = 1,2,
\] (5.3)
\[I_{2h}^{k+1} i_h^k = I_{2h}^{k+l}, \quad k \geq 1, l = 1,2, \] (5.4)
\[\|I_{2h}^{k+l} \chi\|_{m,p} \leq C \|\chi\|_{m,p}, \quad \forall \chi \in S_k, 1 \leq k, m = 0,1, (2 \leq p \leq \infty), l = 1,2. \] (5.5)

Using these properties we can improve global convergence from \(k \)-to \(k+2 \)-order for gradient, and from \(k+1 \)-to \(k+2 \)-order for solution when \(k \geq 2 \). When \(k = 1 \), we get one order gain for the gradient.
THEOREM 5.1. For \(k \geq 2 \), we have the following results:

\[
||u - I_{2h}^{k+1} u_h|| \leq C h^{k+2} \left[||u_t(0)||_{k+1} + \left(\int_0^t ||u_t ||_{k+1}^2 \, d\tau \right)^{1/2} + ||u(t)||_{k+3} \right], \tag{5.6}
\]

\[
||u - I_{2h}^{k+1} u_h||_{0,p} \leq C h^{k+2} \left[||u_t(0)||_{k+1} + \left(\int_0^t ||u_{tt} ||_{k+1}^2 \, d\tau \right)^{1/2} + ||u(t)||_{k+3,p} \right], \quad p > 2, \tag{5.7}
\]

\[
||u_t - I_{2h}^{k+1} u_{h,t}|| \leq C h^{k+2} \left[\left(\int_0^t ||u_{tt} ||_{k+1}^2 \, d\tau \right)^{1/2} + ||u(t)||_{k+3} \right], \tag{5.8}
\]

\[
||u - I_{2h}^{k+1} u_h||_{0,\infty} \leq C h^{k+2} \left[||u_t(t)||_{k+1,\infty} + \left(\int_0^t ||u_{tt} ||_{k+1}^2 \, d\tau \right)^{1/2} + ||u(t)||_{k+3,\infty} \right], \quad p > 2, \tag{5.9}
\]

\[
||u - I_{2h}^{k+2} u_h||_1 \leq C h^{k+2} \left[||u_t(0)||_{k+1} + \left(\int_0^t ||u_{tt} ||_{k+1}^2 \, d\tau \right)^{1/2} + ||u(t)||_{k+3} \right], \tag{5.10}
\]

\[
||u - I_{2h}^{k+2} u_h||_{1,p} \leq C h^{k+2} \left[||u_t(t)||_{k+1,p} + \left(\int_0^t ||u_{tt} ||_{k+1}^2 \, d\tau \right)^{1/2} + ||u(t)||_{k+3,p} \right], \quad p > 2, \tag{5.11}
\]

\[
||u - I_{2h}^{k+2} u_h||_{1,\infty} \leq C h^{k+2-\epsilon} \left[||u_t(t)||_{k+1,\infty} + \left(\int_0^t ||u_{tt} ||_{k+1}^2 \, d\tau \right)^{1/2} + ||u(t)||_{k+3,\infty} \right], \tag{5.12}
\]

for any \(\epsilon > 2/p, p \) large enough.

\[
||u_t - I_{2h}^{k+2} u_{h,t}||_1 \leq C h^{k+2} \left[||u_{ttt}(t)||_{k+1} + \left(\int_0^t ||u_{ttt} ||_{k+1}^2 \, d\tau \right)^{1/2} + ||u(t)||_{k+1} \right]. \tag{5.13}
\]

PROOF. Obviously, by (5.4) and (5.5), we have

\[
u - I_{2h}^{k+1} u_h = u - I_{2h}^{k+l} u + I_{2h}^{k+l}(i_h u - R_h u) + I_{2h}^{k+1}(R_h u - u_h), \tag{5.14}\]

\[
||u - I_{2h}^{k+l} u_h||_{m,p} \leq ||u - I_{2h}^{k+l} u||_{m,p} + C ||i_h^k u - R_h u||_{m,p} + C ||R_h u - u_h||_{m,p}, \tag{5.15}\]

for \(l = 1, 2 \). The estimates of first and third terms are shown in (5.3) and Theorems 2.6, 4.1, 2.3, 2.8, 2.5, 4.2, 2.9 and 2.4 (in this order). It remains estimate the second term. By [5, Corollary to Theorem 3.4.2],

\[
||i_h^k u - R_h u||_{m,p} \leq C h^{k+2} ||u||_{k+3,p}, \quad 2 \leq p \leq \infty, \quad m = 0, 1, \tag{5.16}\]

so that

\[
||i_h^k u_t - R_h u_{t,t}||_{m,p} \leq C h^{k+2} ||u_t||_{k+3,p}, \tag{5.17}\]

Thus, the proof is complete.
Theorem 5.2. For \(k = 1 \), we have
\[
\|u - I_{2h}^2 u_h\|_1 \leq C h^2 \left(\left(\int_0^t \|u_{tt}\|_2^2 \, d\tau \right)^{1/2} + \|u(t)\|_3 \right),
\]
\[
\|u - I_{2h}^2 u_h\|_{1,p} \leq C h^2 \left[\|u(t)\|_{2,p} + \|u_{tt}\|_2 + \left(\int_0^t \|u_{ttt}\|_2^2 \, d\tau \right)^{1/2} + \|u(t)\|_{3,p} \right], \quad 2 < p \leq \infty,
\]
\[
\|u_t - I_{2h}^2 u_{h,t}\|_1 \leq C h^2 \left[\|u_{tt}(t)\|_2 + \left(\int_0^t \|u_{ttt}\|_2^2 \, d\tau \right)^{1/2} + \|u_t(t)\|_3 \right].
\]

Proof. When \(k = 1 \) and \(m = 1 \) in (5.15)
\[
\|u - I_{2h}^2 u_h\|_{1,p} \leq \|u - I_{2h}^2 u_h\|_{1,1,p} + C \|i_h^2 u - R_h u\|_{1,1,p} + C \|R_h u - u_h\|_{1,1,p}.
\]

It suffices to estimate the second term. By [3], for any \(\chi \in S_h \)
\[
(\nabla (i_h^2 u - R_h u), \nabla \chi) = (\nabla (i_h^2 u - u), \nabla \chi)
\]
\[
= O(h^2) \|u\|_{3,p} \|\chi\|_{1,p'}, \quad \frac{1}{p} + \frac{1}{p'} = 1, \quad p \geq 2.
\]

Using the same method as in [4] we have
\[
\|i_h^2 u - R_h u\|_{1,p} \leq C h^2 \|u\|_{3,p},
\]
\[
\|i_h^2 u_t - R_h u_{t}\|_{1,1,p} \leq C h^2 \|u_t\|_{3,p}.
\]

These together with (3.7), (3.17), and (3.8) completes the proof. \(\square \)

Acknowledgements. D. Y. Kwak is partially supported by KOSEF under contract number 97-07-01-01-01-3. Q. Li is partially supported by KFSTS under Brain Pool Program.

References

Kwak: Department of Mathematics, KAIST, Taejon, 305–701, Korea
E-mail address: dykwak@math.kaist.ac.kr

Lee: Department of Mathematics, KAIST, Taejon, 305–701, Korea
E-mail address: sylee@math.x.kaist.ac.kr

Li: Department of Mathematics, Shandong Normal University, Jinan, Shandong, 250014, China
Special Issue on
Singular Boundary Value Problems for Ordinary Differential Equations

Call for Papers

The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical Applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/bvp/guidelines.html. Authors should follow the Boundary Value Problems manuscript format described at the journal site http://www.hindawi.com/journals/bvp/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>May 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>August 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>November 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Juan J. Nieto, Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain; juanjose.nieto.roig@usc.es

Guest Editor

Donal O’Regan, Department of Mathematics, National University of Ireland, Galway, Ireland; donal.oregan@nuigalway.ie