ON A FAMILY OF WEIGHTED CONVOLUTION ALGEBRAS

HANS G. FEICHTINGER and A. TURAN GÜRKANLI

Institut für Mathematik
Universität Wien
Strudlhofgasse 4
A-1090 Wien, Austria

Ondokuz Mayis University
Faculty of Art and Sciences
Department of Mathematics
Samsun, Turkey

Received March 7, 1988

ABSTRACT. Continuing a line of research initiated by Larsen, Liu and Wang [12], Martin and Yap [13], Gürkanli [5], and influenced by Reiter's presentation of Beurling and Segal algebras in Reiter [2, 10] this paper presents the study of a family of Banach ideals of Beurling algebras $L^1_w(G)$, G a locally compact Abelian group. These spaces are defined by weighted L^p-conditions of their Fourier transforms. In the first section invariance properties and asymptotic estimates for the translation and modulation operators are given. Using these it is possible to characterize inclusions in section 3 and to show that two spaces of this type coincide if and only if their parameters are equal. In section 4 the existence of approximate identities in these algebras is established, from which, among other consequences, the bijection between the closed ideals of these algebras and those of the corresponding Beurling algebra is derived.

KEY WORDS AND PHRASES. Beurling algebra, weighted L^p-spaces, convolution, ideal theorem, Banach ideals, factorization

1980 AMS SUBJECT CLASSIFICATION CODES. 43A15

1 Acknowledgement: Supported by the Scientific and Technical Research Council of Turkey and the Foundation of the Ondokuz Mayis University

2 Due to a Max Kade fellowship the first named author spends the academic year 1989/90 at the University of Maryland at College Park, MD, 20742, which allowed him to complete the manuscript there.
1. NOTATIONS

Throughout G denotes a locally compact group G with dual group \hat{G}, and Haar measure dx and $d\hat{x}$ respectively. In order to avoid trivialities we assume throughout to have non-discrete and non-compact groups. We write $\mathcal{X}(G)$ for the space of all continuous, complex-valued functions on G with compact support. For $1 \leq p \leq \infty$ we write $(L^p(G), \| \cdot \|_p)$ the Lebesgue spaces.

A BF-space on G is a Banach space $(B, \| \cdot \|_B)$ of (classes of) measurable functions embedded into $L^1_{\text{loc}}(G)$, i.e. such that for any compact set $K \subseteq G$ there exists some constant $C_K > 0$ with $\| f \chi_K \|_B \leq C_K \| f \|_B$ for all $f \in B$ (where χ_K is the characteristic function of K). The translation operators L_y are given by $L_y f(x) := f(x-y)$, and the multiplication operator M_χ is defined as $M_\chi f(x) := \chi(x) f(x)$ for $x, y \in G$ and $\chi \in \hat{G}$. $(B, \| \cdot \|_B)$ is called (strongly) translation invariant if one has $L_y B \subseteq B$ and $\| L_y f \|_B = \| f \|_B$ for all $f \in B$ and $y \in G$. (Strong) Character invariance is defined in the same way.

A Banach space $(B, \| \cdot \|_B)$ is called a Banach module over a Banach algebra $(A, \| \cdot \|_A)$ if B is a module over A in the algebraic sense for some multiplication $(a, b) \rightarrow a \cdot b$, and satisfies $\| a \cdot b \|_B \leq \| a \|_A \| b \|_B$. If $B \hookrightarrow A$, i.e. if B is continuously embedded into A and the multiplication in A satisfies the above estimate, we call B a Banach ideal in A. A net $(e_\alpha)_{\alpha \in I}$ in A is called a (bounded) approximate identity for A (shortly BAI), if one has $\lim_{\alpha} \| e_\alpha \cdot a - a \|_A \rightarrow 0$ for any $a \in A$. A Banach module (ideal) is called essential if the closed linear span of $A \cdot B$ in $(B, \| \cdot \|_B)$ coincides with B. If A has a BAI $(e_\alpha)_{\alpha \in I}$, this is equivalent (Braun and Feichtinger [1]) to assume that one has $\lim_{\alpha} \| e_\alpha \cdot b - b \|_B \rightarrow 0$ for all $f \in B$.

For a Beurling weight w on G (Reiter [2]), i.e. a continuous function $w(x) \geq 1$ and $w(x+y) \leq w(x)w(y)$ for all $x, y \in G$, we set for $1 \leq p < \infty$:

$L^p_w(G) := \{ f \mid \int_G |f(x)|^p w(x) dx \}$. It is a Banach space under the natural norm

$\| f \|_{p, w} := \left(\int_G |f(x)|^p w(x) dx \right)^{1/p}$.

Recall that one has $L^p_{w_1}(G) \subseteq L^p_{w_2}(G)$ if and only if $w_2 \leq w_1$, i.e. $w_2(x) \leq w_1(x)$ for all $x \in G$ (Feichtinger [3]). Two positive functions are called equivalent, we write $w \approx w'$, if $w_2(w_1)$ and $w_1(w_2)$. $L^1_w(G)$ is called a Beurling algebra, because it is a Banach algebra with respect to convolution. It always has a BAI. Moreover $L^p_w(G)$ is an essential Banach module over $L^1_w(G)$ with respect to convolution for $1 \leq p < \infty$ (Braun and Feichtinger [1], Prop.1, actually, it follows by writing convolution as vector-valued integral).

For functions in $L^1(G)$ the Fourier transform is denoted alternatively by \hat{f} or $\mathcal{F} f$ (if we want to stress the Fourier transform $f \mapsto \hat{f} = \mathcal{F} f$ as a mapping). Given a normed space $(B, \| \cdot \|_B) \hookrightarrow L^1(G)$ we consider $\mathcal{F} B$ always as the image of B under \mathcal{F}, endowed with its natural norm $\| \mathcal{F} f \|_{\mathcal{F} B} := \| f \|_B$.

For any subspace $I \subseteq L^1(G)$ we define the set $\text{cosp}(I)$ by

$\text{cosp}(I) := \{ \chi \in \hat{G}, \hat{f}(\chi) = 0 \text{ for all } f \in I \}$.
2. BASIC RESULTS AND INVARIANCE PROPERTIES.

Let \(w, \omega \) be weight functions on \(G \) and \(\hat{G} \) respectively. For \(1 \leq p < \infty \) we set

\[
A_{w,\omega}^p(G) := \{ f | f \in L^1_w(G), \hat{f} \in L^p_w(\hat{G}) \}, \quad \text{and} \quad \|f\|_{A_{w,\omega}^p} := \|f\|_{L^1_w} + \hat{f}\|_{L^p_w}.
\]

Among the most natural examples for spaces of this type (describing both decay properties of its elements plus a certain amount of smoothness) are the spaces \(L^{1w}_s(\mathbb{R}^n) \) for \(s > 0 \), where \(L^{2s}_s(\mathbb{R}^n) \) denotes the Bessel potential spaces of order \(s \) (Stein [4]). In fact, these spaces arise as spaces \(A_{w,\omega}^p(\mathbb{R}^n) \) for \(\omega(y) := (1 + |y|^2)^{s/2} \). For special cases see Gürkanli [5].

The basic observation concerning \(A_{w,\omega}^p \)-spaces is the following one:

THEOREM 2.1. \((A_{w,\omega}^p(G), \|f\|_{w,\omega}) \) is a Banach ideal in \(L^1(G) \), hence a Banach algebra with respect to convolution.

PROOF. The result can be obtained either by slight modifications of the proof of Thm. 3.1 in Feichtinger [6] or of Theorems 1, 2 in Gürkanli [5].

LEMMA 2.2. For any \(f \in L^p_w(G) \), \(f \neq 0 \), the function \(x \rightarrow \|L_x f\|_{p,w} \) is equivalent to the weight function \(w \), i.e. there is a constant \(C > 0 \) such that one has

\[
C^{-1} w(x) \leq \|L_x f\|_{p,w} \leq C w(x) \quad \text{for all} \quad x \in G.
\]

PROOF. For the second estimate we write for \(f \in L^p_w(G) \)

\[
\|L_x f\|_{p,w} = (\int |f(z-x)|^{p} P_w^p(z)dz)^{1/p} = (\int |f(u)|^{p} P_w^{p}(u+du))^{1/p} \leq w(x)|f|_{p,w}.
\]

For the first estimate choose a compact set \(K \subseteq G \) with \(\|f\|_{p,w} > 0 \). Then

\[
\|L_x f\|_{p,w} = (\int_{x+K} |f(z-x)|^{p} P_w^p(z)dz)^{1/p} = (\int K |f(u)|^{p} P_w^{p}(u+du))^{1/p} \geq \frac{\|f\|_{L^K}^{p,w}(x)}{\sup \omega_K^{w}(-u)}.
\]

Since \(w \) is locally bounded (cf. [6]) the proof is finished by setting \(C := \max (\|f\|_{p,w}(x)/\sup \omega_K^{w}(-u)) \).

LEMMA 2.3. For any \(f \in A_{w,\omega}^p(G) \), \(f \neq 0 \), the function \(x \rightarrow \|L_x f\|_{w,\omega} \) is equivalent to the weight function \(\omega \).

PROOF. The proof is similar to that of Lemma 2.2 and is left to the interested reader.

THEOREM 2.4. \(A_{w,\omega}^p(G) \) is translation and character invariant. Moreover, the functions \(x \rightarrow \|L_x f\|_{w,\omega} \) and \(\chi \rightarrow \|M_{\chi} f\|_{\chi, w,\omega} \) are equivalent to the weight functions \(w \) and \(\omega \) respectively.

PROOF. Combining Lemma 2.2 and Lemma 2.3 gives the result, by observing that for the lower estimate any expression with \(f \) with \(\|f\|_{w,\omega} = 1 \) is appropriate.

3. INCLUSIONS AND CONSEQUENCES.

We start with the observation that the intersection of two weighted \(L^p \)-spaces \(L_{w_1}^p(G) \) and \(L_{w_2}^p(G) \) is just \(L_{w}^p(G) \), where \(w \) may be taken as \(w = \max(w_1, w_2) \). Hence we have \(A_{w_1,\omega_1}^p \cap A_{w_2,\omega_2}^p = A_{w_1,\omega_2}^p \), with \(w = \max(w_1, w_2) \), and \(\omega = \max(\omega_1, \omega_2) \). Next we look for inclusions.
LEMMA 3.1. Inclusions between $A^p_{w_1}(G)$-spaces are automatically continuous, i.e. given weight functions $w_1, w_2, \omega_1, \omega_2$ on G and \hat{G} respectively one has: If $A^p_{w_1}(G) \subseteq A^p_{w_2}(G)$ then there is some constant $C > 0$ such that $\|f\|_{w_1, \omega_1} \leq C \|f\|_{w_2, \omega_2}$ for all $f \in A^p_{w_1}(G)$.

PROOF. The result follows from the fact, that the $A^p_{w}(G)$-spaces are Banach spaces, continuously embedded into $L^1(G)$. Thus the closed graph theorem can be applied in order to check that the inclusion mapping has closed graph, hence is continuous.

THEOREM 3.3. $A^p_{w_1}(G) \subseteq A^p_{w_2}(G)$ if and only if $w_2 \leq w_1$.

PROOF. It is obvious that $w_2 \leq w_1$ implies $L^1_{w_1}(G) \subseteq L^1_{w_2}(G)$ and $L^p_{w_1}(G) \subseteq L^p_{w_2}(G)$, hence $A^p_{w_1}(G) \subseteq A^p_{w_2}(G)$.

The converse implication follows by means of Lemma 3.1 with Lemmas 2.2 and 2.3. (using the estimate $\|L \cdot f\|_{w_2, \omega_2} \leq C \|L \cdot f\|_{w_1, \omega_1}$).

COROLLARY 3.3. Two $A^p_{w}(G)$-spaces are equal if and only if the corresponding weights are equivalent.

COROLLARY 3.4. There is an equivalent, strongly character invariant norm for $A^p_{w}(G)$ if and only if $\omega \equiv 1$.

PROOF. If $\omega \equiv 1$ then $\|f\| := \|f\|_{1, \omega} \|f\|_p$ is an equivalent strongly character invariant norm on $A^p_{w}(G)$. Conversely, if such an equivalent norm exists it is clear that the function $\chi \mapsto \|M \chi\|$ is bounded on $A^p_{w}(G)$, which implies the boundedness of ω by Thm. 2.4. since any bounded Beurling weight is equivalent to the constant (e.g. the trivial weight $w(x) = 1$) weight, the assertion is verified.

COROLLARY 3.5. There is an equivalent, strongly translation invariant norm for $A^p_{w}(G)$ if and only if $\omega \equiv 1$.

Since the proof is similar to that of 3.4 it is left to the reader.

So far we have compared algebras $A^p_{w}(G)$ with fixed p. In order to deal with the situation of different values p and q we have to introduce a slight extra condition: A weight w is said to satisfy the Beurling-Domar condition (shortly: (BD), Domar [7] or Reiter [2]), if one has

$$\sum_{n \geq 1} n^{-2} \log(w(x^n)) < \infty$$

for all $x \in G$.

THEOREM 3.6. Assume that w satisfies (BD) and that $w(\chi) \to \omega$ for $\chi \to \omega$ in \hat{G}. Then $A^p_{w}(G) \subseteq A^q_{w}(G)$ if and only if $p \leq q$.

PROOF. By Lemma 3.1, we may assume $\|f\|_{w, \omega} \leq C \|f\|_{Q, \omega}$ for $f \in A^p_{w}(G)$.

Since $\omega(t) \to \omega$ for $t \to \omega$, it is possible to find for any $n \geq 1$ some compact set $K_n \subseteq \hat{G}$ such that $\omega(t) \geq n^{-2}$ for all $t \in K_n$. Since w satisfies the (BD)-condition we can find some $f_o \in L^1_w(G)$ such that f_o has compact support K_o, $f_o(0) = 1$. Choosing by induction a sequence $(k_{n+1}^{n} = 1)$ in $\hat{G} \setminus K_n$ such that $(t+K_o) \cap (t_j+K_o) = \emptyset$ for $i \neq j$. We then define f_n by

$$f_n = \sum_{k=1}^{n} \omega^{-1}(t_k) M_{t_k} f_o.$$
Therefore
\[\hat{f}_n = \sum_{k=1}^{n} \omega^{-1}(t_k) \hat{l}_{t_k} \hat{f}_o. \]
In order to estimate \(\|f_n\|_{p,w} \) from below we observe first that by the argument used in the second part of the proof of Lemma 2.2 one has
\[\|f_n\|_{p,w} \leq C \omega(t_k)^{-1} \|f_o\|_p \quad \text{for all } k \geq 1. \]
Since these functions have disjoint supports we have
\[(\|f_n\|_{p,w})^p = \sum_{k=1}^{n} \omega^{-1}(t_k) (\|f_o\|_{p,w})^p \leq C \sum_{k=1}^{n} \|f_o\|_p = n C \|f_o\|_p, \]
and thus \(\|f_n\|_{p,w} \leq n^{1/p} \). Since \(t_k \not\in K_n \) for all \(k \geq 1 \) we also have
\[\|f_n\|_{1,w} = \sum_{k=1}^{n} \omega^{-1}(t_k) \|f_o\|_{1,w} \leq n \|f_o\|_{1,w} = n^{-1} \|f_o\|_{1,w}. \]
Combining both estimates it is clear that we have \(\|f_n\|_{1,w}^q = n^{-1/q} \). Since the same kind of estimate gives \(\|f_n\|_{q,w}^q = n^{-1/q} \) our first estimate implies \(n^{1/q} \leq C n^{1/p} \), which in turn implies \(q \geq p \).

COROLLARY 3.6. Assume that \(1 \leq p,q < \infty \), that \(w \) satisfies (BD) and that \(\omega \to \infty \) at infinity. Then \(A^p_{1,w}(G) = A^q_{1,w}(G) \) if and only if \(p = q \).

It is now important to reexamine the above proofs in order to verify that the arguments used in the proofs of Theorems 3.2 and 3.6 are in fact independent of each other. Thus we come to the following result:

THEOREM 3.7. Assume that \(w_1,w_2 \) satisfies (BD) and that \(\omega_i(t) \to \infty \) for \(t \to \infty \) in \(\hat{G} \) for \(i=1,2 \). Then \(A^K_{p_1,w_1}(G) = A^K_{p_2,w_2}(G) \) if and only if \(w_2 \approx w_1 \) and \(p_1 = p_2 \), i.e. if all parameters are equal.

PROOF. That these conditions are sufficient for the equality of the spaces is evident. For the converse we only have to observe that the arguments in the proof of 3.2 also work if different exponents \(p_1 \) and \(p_2 \) are involved. Thus we may conclude that corresponding weights have equivalent. Given this the equality of exponents follows from Theorem 3.6.

4. APPROXIMATE IDENTITIES AND CONSEQUENCES.

LEMMA 4.1. Let the weight \(w \) on \(G \) satisfy (BD). Then the Banach algebra \(L^1_w(G) \) has a BAI whose Fourier transforms have compact support.

PROOF. Set \(A^K_w = \{ f \mid f \in L^1_w, \text{ supp } \hat{f} \text{ compact } \}. \) Condition (BD) implies that \(A^K_w \) is a dense ideal in \(L^1_w(G) \), Domar [7]. Since \(L^1_w(G) \) has a BAI (Reiter [21]), the proof is complete by Lemma 1.4. in Doran and Wichmann [8].

THEOREM 4.2. If \(w \) satisfies (BD), the following is true:
\(A^p_{w,w}(G) \) is a dense Banach ideal in \(L^1_w(G) \), having an approximate identity, bounded in the norm of \(L^1_w(G) \), with compactly supported Fourier transforms. In particular it is an essential Banach ideal, and \(L^1_w A^p_{w,w} = A^p_{w,w} \). \(A^p_{w,w}(G) \) does not have BAI, because \(G \) was assumed to be non-discrete.

PROOF. That \(A^p_{w,w}(G) \) is a Banach ideal, containing \(A^K_w \), hence being dense in \(L^1_w \), is easy to verify. In view of Lemma 4.1 it will be sufficient
to show that any L^1_w-bounded AI $(\alpha_\omega)_\omega$ in A^K_w is also an AI in A^P_w.

First we observe that boundedness of $(\alpha_\omega)_\omega$ in $L^1_w(G)$ implies
sup $\alpha_\omega \leq C < \infty$. Since \mathcal{B}_w is translation invariant the estimate
$$|\hat{g}(t)| \leq C \cdot |t|^{-1} \leq \left(\left\| \hat{\alpha}_\omega \right\| \right) \omega$$
implies convergence of $(\alpha_\omega)_\omega$ to 1 uniformly over compact sets.

Given thus $f \in A^P_w(G)$ we choose a compact set $K \subset G$ such that
$$|f - \hat{f}|_{p,\omega} \leq e^{-p/2}$$
for $p < \infty$. Given α_ω with $|\hat{\alpha}_\omega|_{\infty} < e^{-p/2}$ for all ω, we have
$$|f - \hat{f}|_{p,\omega} \leq |f - \hat{\alpha}_\omega|_{p,\omega} + |\hat{\alpha}_\omega|_{p,\omega}$$
for all ω. Altogether
$$|f - \hat{f}|_{p,\omega} \leq |f - \hat{\alpha}_\omega|_{p,\omega} + |\hat{\alpha}_\omega|_{p,\omega}$$
for all ω. Altogether it follows that $|f - \hat{f}|_{p,\omega} \to 0$ for any $f \in A^P_w(G)$.

The unboundedness of any AI in the case of a non-discrete group (i.e. in case of non-compactness of G) follows from the observation that a family of operators $\omega(t)$ converges uniformly to 1 over compact sets cannot be bounded in $L^p(G)$ for $p < \infty$, because $\omega(t) \geq \delta > 0$ for all $t \in G$ (details left to the reader).

Besides the convolution properties of $A^P_w(G)$ we also find an interesting structure of $A^P_w(G)$ with respect to pointwise multiplication. We denote by $A^P_w(G)$ the Banach algebra $\mathcal{F}^{-1}(L^1_w(G))$ with its natural norm.

THEOREM 4.3. a) If ω satisfies (BD) then $A^P_w(G)$ is a dense Banach ideal in $A_w^P(G)$ with respect to pointwise multiplication, containing the ideal $K(G) \cap A_w^P(G)$ as a dense ideal. b) Any bounded approximate identity $(\alpha_j)_{j \in \mathbb{N}}$ for $A_w^P(G)$ in $X(G) \cap A_w^P(G)$ is also an approximate identity for $A_w^P(G)$ and $X(G) \cap A_w^P(G)$ is a dense subspace of $A_w^P(G)$.

PROOF. It is evident from the inversion theorem that $A^P_w(G)$ is a pointwise Banach algebra, containing $X(G) \cap A_w^P(G)$, which is a dense ideal as a consequence of (BD). As in Lemma 4.1 one derives that $A_w^P(G)$ has a BAI $(\alpha_j)_{j \in \mathbb{N}}$ in $K(G) \cap A^P_w(G)$, which by the arguments given in Thm. 4.2. tends to the constant function 1 uniformly over compact sets. This in turn implies
$$|u_j \cdot f - f|_{1,\omega} \to 0$$
for any $f \in L^1_w(G)$. On the other hand we have $u_j = \mathcal{F}^{-1}(\hat{\alpha}_j)$ for some BAI in $L^1_w(G)$. Since $L^1_w(G)$ is an essential Banach convolution module over $L^1_w(G)$ we have at the same time
$$|(u_j \cdot f - f)|_{p,\omega} = |\hat{\alpha}_j \cdot \hat{f} - \hat{f}|_{p,\omega} \to 0$$
for $f \in A^P_w(G)$. The same arguments show $|u_j \cdot f - f|_{p,\omega} \to 0$ for any BAI $(\alpha_j)_{j \in \mathbb{N}}$ in $L^1_w(G)$.

In order to check the density of $X(G) \cap A_w^P(G)$ in $A_w^P(G)$ let us observe first that we can approximate $f \in A_w^P(G)$ by functions in A^K_w (in the norm of A^K_w). By the inversion theorem we see that h may be assumed to be continuous. Now $u_j \cdot h$ approximates h, and the proof of b) is complete.
Our next step is to check that $A_{p,w,\omega}$ is a Wiener algebra in Reiter’s sense ([2]) with its natural norm, given by $f \mapsto \|f\|_{A_{p,w,\omega}}$. Since we know that $A_{\omega}(G)$ is a Wiener algebra if ω satisfies (BD) (see [2]) and that $X(G) \cap A_{p,w,\omega}$ is dense in $A_{p,w,\omega}$, the assertion follows from the following result (by choosing $A = A_{\omega}(G)$ and $B = A_{p,w,\omega}(G)$).

LEMMA 4.4. Let A be a Banach algebra of continuous functions on a lca. group G (under pointwise multiplication) which is a Wiener algebra in Reiter’s sense. Then any Banach ideal $(B, \|\cdot\|_B)$ in A which contains $A \cap (X(G))$ as a dense subspace is again a Wiener algebra.

PROOF. The conditions to be checked will be clear from the proof:

First of all it is clear that $(B, \|\cdot\|_B)$ is a normed function algebra (upon renormalization, if necessary), and $h \mapsto h(x)$ is continuous for any $x \in G$, $h \in B$, since $B \rightarrow A$ implies that $|h(x)| \leq C_x \|h\|_A \leq C_x \cdot C \|h\|_B$.

Furthermore we have to check a regularity condition (functions in B separate points from open sets) and the local inversion property (given a function $f \in B$, non-vanishing over a compact set $K \subseteq G$) there exists $h \in B$ with $h(y) = 1/f(y)$ for all $y \in K$.

Both properties follow from the observation that 'locally' B coincides with A under the given circumstances. In fact, given any compact set $K \subseteq G$ for any function $f \in A$ one can find some $f_1 \in B$ with $f(y) = f_1(y)$ for all $y \in K$. This is verified as follows: By the density of $X(G) \cap A$ in A we can find some $g \in X(G) \cap A \subseteq B$ such that $g(y) \neq 0$ for all $y \in K$. Choosing now $g_1 \in A$ as a local inverse to g over K (which exists, since A has local inversion) we obtain the function $g \cdot g_1 \in (B \cap X(G)) \cdot A \subseteq B \cap X(G)$. Now it is evident that we have $f(y) = f(y) \cdot g \cdot g_1(y) = f_1(y)$ for all $y \in K$, with $f_1 = f \cdot g \cdot g_1 \in A \cdot B$, as was required. Finally, the density of $X(G) \cap B$ in B (with the $\|\cdot\|_B$-norm) is part of the assumption, since $X(G) \cap B = X(G) \cap A$.

5. IDEAL THEORY AND NONFACTORIZATION IN $A_{p,w,\omega}(G)$.

In this section the ideal theorem for the algebras $A_{p,w,\omega}$ is discussed.

THEOREM 5.1. If ω satisfies (BD) there is a one to one correspondence between the closed ideals of $L^1_w(G)$ and those of $A_{p,w,\omega}(G)$, given by the following two mappings which are inverse to each other:

(a) Given a closed ideal $J \subseteq L^1_w(G)$ the set $J \cap A_{p,w,\omega}$ is a closed ideal in $A_{p,w,\omega}(G)$.

(b) Given any closed ideal $I \subseteq A_{p,w,\omega}(G)$ the closure of I in $L^1_w(G)$ is a closed ideal in $L^1_w(G)$.

PROOF. Since $A_{p,w,\omega}(G)$ is an essential Banach ideal in $L^1_w(G)$ (by Thm.4.2, and $L^1_w(G)$ has bounded approximate units, the result follows from the ideal theorem for abstract Segal algebras (Reiter [10], and Feichtinger [11] for detailed results of this type).
The abstract bijection between the set of closed ideals of two spaces $A_p \omega_i$, $i=1,2$, belonging to the same Beurling algebra $L_1 \omega_i(G)$, resulting from a
direct application of Theorem 5.1, can be described more explicitly:

THEOREM 5.2. If ω satisfies (BD) for any two weights ω_1, ω_2 on G the
following mappings establish a bijection between the set of closed ideals of
$A_p \omega_1(G)$ and those of $A_p \omega_2(G)$:

a) $I_1 \rightarrow I_1 \cap A_p \omega_2$ (the closure here in $L_1 \omega_1$) and

b) $I_2 \rightarrow (I_2 \cap A_p \omega_1)^\perp$ (the closure being taken in $A_p \omega_1(G)$).

c) Moreover corresponding ideals have the same cospectrum.

PROOF. a) There is just one way to describe the composition of the two
bijections as described in Thm.5.1. As for b) it is sufficient to verify
that any closed ideal I in an $A_p \omega$-algebra can be recovered from $I \cap A_p \omega_2$ (by
taking the closure). Since the inclusion $I \subseteq (I \cap A_p \omega_2)^\perp$ is sufficient to check that any $f \in (I \cap A_p \omega_2)^\perp$ can be approximated by elements in I.
Thus, given f and $\varepsilon > 0$ we choose $g \in A_p \omega_2$ (according to Lemma 4.1) such
that $\|f - f \ast g\|_p < \varepsilon$. Since $f \ast g \in I \cap A_p \omega_2 \subseteq I \cap A_p \omega_1$ the result is proved.

Finally, c) follows easily from the observation that two spaces with the
same $L_1 \omega$-closure have the same cospectrum.

THEOREM 5.3. a) $A_p \omega_1(G) \subseteq A_p \omega_2(G)$ as a Banach ideal if and only
if $\omega_2 \equiv \omega_1$ and $\omega_1 \cap \omega_2$. In the positive case the bijection between ideals
is established by taking the closure in the larger space, or for the inverse
mapping the intersection with the smaller one (as in Thm.5.1).

PROOF. It is easy to check that the conditions are sufficient to verify
the properties of a Banach ideal. Conversely the inclusion already implies
that $\omega_2 \equiv \omega_1$ and $\omega_2 \cap \omega_1$ by Thm.3.2. In order to prove $\omega_1 \cap \omega_2$ note that
we have $|f \ast g|^{p \omega_1, \omega_1} \leq |f|^{p \omega_1, \omega_1} |g|^{p \omega_2, \omega_2}$ for $f \in A_p \omega_1, g \in A_p \omega_2$.
Therefore

$|L_x(f \ast g)|^{p \omega_1, \omega_1} \leq |f|^{p \omega_1, \omega_1} |L_x g|^{p \omega_2, \omega_2}.$

From Lemma 2.1 the left side is equivalent to ω_1 and the right side is
equivalent to ω_2. The above estimate then implies $\omega_1 \cap \omega_2$. The final
statement of obvious from Theorem 5.1.

The question, whether $A_p \omega(G)$ has the weak factorization property can
be answered to the negative:

THEOREM 5.4. If ω is symmetric, i.e. if $\omega(x) = \omega(-x)$ for all $x \in G$.

Then $A_p \omega(G)$ does not have weak factorization (with respect to convolution).

PROOF. We deduce this result from Corollary 1.4 in [9]. We first check
that $\mathcal{A}_p \omega$ is a weakly self adjoint Banach algebra. This follows from the
fact that the symmetry of ω implies that $\mathcal{A}_p \omega$ is closed with respect to
the Haar measure on G is unbounded for non-discrete groups G we

When $\omega(x) = \omega(-x)$ for all $x \in G$ then $\mathcal{A}_p \omega(G)$ is weakly self
adjoiness follows therefrom. Since by definition $\mathcal{A}_p \omega$ is contained in
$\mathcal{A}_p \omega(G)$, and the Haar measure on G is unbounded for non-discrete groups G we

Finally, c) follows easily from the observation that two spaces with the
same $L_1 \omega$-closure have the same cospectrum.
can apply Corollary 1.4 of [9] and the proof is complete.

ACKNOWLEDGEMENTS. The major part of this work was prepared at the University of Wien. The second named author would like to thank the Department of Mathematics of the University of Vienna for its reception, and the Scientific and Technical Research Council of Turkey for financial support. He also would like to thank Doz. Hans G. Feichtinger for his hospitality and cooperation. The first named author has to carry the responsibility for the late presentation of the revised version. He wants to thank the Mathematics Department of the University of Maryland at College Park for its hospitality, as a long term visit there gave him the chance to finish the paper.

References

Mathematical Problems in Engineering

Special Issue on
Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>February 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>May 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>August 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Department of Physics, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk

Hindawi Publishing Corporation
http://www.hindawi.com