A FUNCTIONAL EQUATION CHARACTERIZING
CUBIC POLYNOMIALS AND ITS STABILITY

SOON-MO JUNG and PRASANNA K. SAHOO

(Received 30 May 2000)

ABSTRACT. We study the generalized Hyers-Ulam stability of the functional equation
\[f(x_1, x_2, x_3) = h(x_1 + x_2 + x_3). \]

2000 Mathematics Subject Classification. 39B22, 39B82.

1. Introduction. Given an operator \(T \) and a solution class \(\{ u \} \) with the property that \(T(u) = 0 \), when does \(\| T(v) \| \leq \varepsilon \) for an \(\varepsilon > 0 \) imply that \(\| u - v \| \leq \delta(\varepsilon) \) for some \(u \) and for some \(\delta > 0 \)? This problem is called the stability of the functional transformation. A great deal of work has been done in connection with the ordinary and partial differential equations. If \(f \) is a function from a normed vector space into a Banach space, and \(\| f(x + y) - f(x) - f(y) \| \leq \varepsilon \), Hyers [3] proved that there exists an additive map \(A \) such that \(\| f(x) - A(x) \| \leq \varepsilon \). If \(f(x) \) is a real continuous function of \(x \) over \(\mathbb{R} \), and \(|f(x + y) - f(x) - f(y)| \leq \varepsilon \), it was shown by Hyers and Ulam [4] that there exists a constant \(k \) such that \(|f(x) - kx| \leq 2\varepsilon \). Taking these results into account, we say that the additive Cauchy equation \(f(x + y) = f(x) + f(y) \) is stable in the sense of Hyers and Ulam.

In this paper, we study a generalized Hyers-Ulam stability of a mean value type functional equation.

Let \(\mathbb{R} \) be the set of real numbers. For distinct points \(x_1, x_2, \ldots, x_n \) in \(\mathbb{R} \), the divided difference of \(f: \mathbb{R} \to \mathbb{R} \) is recursively defined as
\[f[x_1] = f(x_1), \]
\[f[x_1, x_2, \ldots, x_n] = \frac{f[x_1, x_2, \ldots, x_{n-1}] - f[x_2, x_3, \ldots, x_n]}{x_1 - x_n}. \]

Bailey [2], generalizing a result of Aczel [1], proved the following result: if \(f \) is a differentiable function satisfying the functional equation
\[f[x_1, x_2, x_3] = h(x_1 + x_2 + x_3), \quad \forall x_1, x_2, x_3 \in \mathbb{R} \]
(1.2)
with \(x_1 \neq x_2, x_2 \neq x_3, x_3 \neq x_1 \), then \(f \) is a polynomial of degree at most three. In Bailey’s proof, the differentiability assumption plays a central role. Kannappan and Sahoo [5] have determined the general solution of \(f[x_1, x_2, \ldots, x_n] = h(x_1 + x_2 + \cdots + x_n) \) without the differentiability assumption. In the next section, we determine the general solution of (1.2) by an elementary method.
2. Solution of the functional equation (1.2). Now we give the solution of the function equation (1.2) using an elementary technique.

Theorem 2.1. Let \(f \) satisfy the functional equation (1.2) for all \(x_1, x_2, x_3 \in \mathbb{R} \) with \(x_1 \neq x_2, x_2 \neq x_3, \) and \(x_3 \neq x_1. \) Then \(f \) is a polynomial of degree at most three and \(h \) is linear.

Proof. If \(f(x) \) is a solution of (1.2) so is \(f(x) + a_0 + a_1 x, \) where \(a_0 \) and \(a_1 \) are arbitrary constants. This can be verified by direct substitution into the expansion of the functional equation (1.2), that is,

\[
(x_2 - x_3)f(x_1) + (x_3 - x_1)f(x_2) + (x_1 - x_2)f(x_3) = (x_1 - x_3)(x_1 - x_2)(x_2 - x_3)h(x_1 + x_2 + x_3).
\]

(2.1)

Letting \(f(x_i) + a_0 + a_1 x_i \) for \(i = 1, 2, 3 \) for \(f(x_i) \) in the expansion (2.1), we get

\[
(x_2 - x_3)[f(x_1) + a_0 + a_1 x_1] + (x_3 - x_1)[f(x_2) + a_0 + a_1 x_2] + (x_1 - x_2)[f(x_3) + a_0 + a_1 x_3] = (x_1 - x_3)(x_1 - x_2)(x_2 - x_3)h(x_1 + x_2 + x_3).
\]

(2.2)

Each term involving an \(a_0 \) or an \(a_1 \) has an opposite-sign term and therefore cancels by simple algebraic manipulation. Thus we have again the expanded form (2.1) of (1.2).

Let \(g(x) = f(x) + a_0 + a_1 x. \) Then \(x = 0 \) inserted into \(g(x) \) yields

\[
f(0) = g(0) - a_0.
\]

(2.3)

We are free to pick \(a_0 = g(0) \) so that \(g(x) \) yields \(f(0) = 0. \) In other words, by a suitable choice for \(a_0, \) without loss of generality, we may assume that

\[
f(0) = 0.
\]

(2.4)

Now by setting \(x = \alpha \) in the definition of \(g(x) \) we get

\[
f(\alpha) = g(\alpha) - a_0 - a_1 \alpha.
\]

(2.5)

Letting \(a_0 + a_1 \alpha = g(\alpha) \) we get \(f(\alpha) = 0 \) and we may assume, without loss of generality, that

\[
f(\alpha) = 0
\]

(2.6)

for some \(\alpha \neq 0 \) in \(\mathbb{R}. \) Note that there are many choices for such an \(\alpha. \)

First substitute \((x, 0, \alpha)\) for \((x_1, x_2, x_3)\) in (2.1) to get

\[
f(x) = -x(\alpha - x)h(x + \alpha)
\]

(2.7)

(after using (2.4) and (2.6)) for \(x \neq 0, \alpha. \)

Next, we substitute \((x, 0, y)\) for \((x_1, x_2, x_3)\) in (2.1) to get

\[
\frac{f(x)}{x(x - y)} - \frac{f(y)}{y(x - y)} = h(x + y) \quad \forall x, y \neq 0, x \neq y.
\]

(2.8)
Define
\[g(x) = \frac{f(x)}{x} \quad \text{for } x \in \mathbb{R} \setminus \{0\}. \quad (2.9) \]

Then (2.8) reduces to
\[g(x) - g(y) = (x - y)h(x + y) \quad \forall x, y \in \mathbb{R} \setminus \{0\} \text{ with } x \neq y. \quad (2.10) \]

Note that (2.10) is valid even for \(x = y \).

Now we consider the equation
\[g(x) - g(y) = (x - y)h(x + y) \quad \forall x, y \in \mathbb{R} \setminus \{0\}. \quad (2.11) \]

Put \(y = -x \) in (2.10) to get
\[g(x) - g(-x) = 2xh(0) \quad \forall x \neq 0. \quad (2.12) \]

Next, replace \(y \) by \(-y \) in (2.10) to get
\[g(x) - g(-y) = (x + y)h(x - y) \quad \text{for } x, y \in \mathbb{R} \setminus \{0\} \text{ with } x + y \neq 0. \quad (2.13) \]

Again (2.13) holds if \(x + y = 0 \). Thus we conclude that (2.13) holds for \(x, y \in \mathbb{R} \setminus \{0\} \).

Subtract (2.10) from (2.13) and use (2.12) to get
\[(x + y)[h(x - y) - h(0)] = (x - y)[h(x + y) - h(0)] \quad \forall x, y \in \mathbb{R} \setminus \{0\}. \quad (2.14) \]

Fix a nonzero \(u \) in \(\mathbb{R} \). Choose a \(v \in \mathbb{R} \) such that \((u + v)/2 \neq 0 \) and \((u - v)/2 \neq 0 \). There are plenty of choices for such \(v \). Let
\[x = \frac{u + v}{2}, \quad y = \frac{u - v}{2}, \quad (2.15) \]

so that
\[u = x + y, \quad v = x - y. \quad (2.16) \]

Letting (2.16) into (2.14), we get
\[u[h(v) - h(0)] = v[h(u) - h(0)] \quad \forall v \neq u, -u. \quad (2.17) \]

(Here note that \(v \) can be zero since \(x = y \) is allowed.) Hence for fixed \(u = u_1 \), we get
\[h(v) = a_1 v + b_1 \quad \text{for } v \in \mathbb{R} \setminus \{u_1, -u_1\}. \quad (2.18) \]

Again \(u = u_2 \), we get
\[h(v) = a_2 v + b_2 \quad \forall v \in \mathbb{R} \setminus \{u_2, -u_2\}. \quad (2.19) \]

Since the sets \(\{u_1, -u_1\} \) and \(\{u_2, -u_2\} \) are disjoint, we get
\[h(v) = av + b \quad \forall v \in \mathbb{R}. \quad (2.20) \]

Now using (2.20) in (2.7), we have
\[f(x) = (x^2 - x\alpha)h(x + \alpha) = (x^2 - x\alpha)[a(x + \alpha) + b] = ax^3 + bx^2 + cx, \quad (2.21) \]
where \(c = -a\alpha^2 - b\alpha \). Removing the assumption that \(f(0) = 0 \), we get

\[
f(x) = ax^3 + bx^2 + cx + d \quad \forall x \neq 0, \alpha.
\]

(2.22)

By (2.4), (2.6), and (2.22), we conclude that \(f \) is a polynomial of degree at most three for all \(x \in \mathbb{R} \). This proof is now complete.

For a more general result, the interested reader should refer to Kannappan and Sahoo [5].

3. Stability of the functional equation (1.2). Let \(G \) be an additive subgroup of \(\mathbb{C} \) and let \(\varphi : G^3 \rightarrow [0, \infty) \) be a control function. In the following theorem, the stability of (1.2) for cubic polynomials will be investigated in a modified form (3.1).

Theorem 3.1. Let \(\alpha \in G \setminus \{0\} \) and \(\beta \in G \setminus \{-\alpha, 0, \alpha\} \) be fixed. If the functions \(f, h : G \rightarrow \mathbb{C} \) satisfy the inequality

\[
\begin{align*}
| (y - z)f(x) + (z - x)f(y) + (x - y)f(z) & - (x - z)(x - y)(y - z)h(x + y + z) | \leq \varphi(x, y, z), \quad \forall x, y, z \in G, \\
\end{align*}
\]

(3.1)

then there exist constants \(a, b, c, d \) such that

\[
\begin{align*}
| f(x) - ax^3 - bx^2 - cx - d | & \leq \frac{|x^2 - \alpha^2|}{2|\beta|} \varphi(x, \beta, -\beta) \\
& + \frac{|x^2 - \beta^2|}{2|\alpha|} \varphi(x, \alpha, -\alpha) \quad \forall x \in G, \\
| h(x) - ax - b | & \leq \frac{|x^2 - \beta^2|}{2|\alpha|} + \frac{|\beta^2 - \alpha^2|}{2|\beta|} \varphi(x, \alpha, -\alpha) \\
& + \frac{1}{2|\beta|} \varphi(x, \beta, -\beta) \quad \forall x \in G \setminus \{-\alpha, \alpha\}.
\end{align*}
\]

(3.2)

Moreover, the constants \(a, b, c, d \) are explicitly given by

\[
\begin{align*}
a &= \frac{f(\beta) - f(-\beta)}{2\beta(\beta^2 - \alpha^2)} - \frac{f(\alpha) - f(-\alpha)}{2\alpha(\beta^2 - \alpha^2)}, \\
b &= \frac{f(\beta) + f(-\beta)}{2(\beta^2 - \alpha^2)} - \frac{f(\alpha) + f(-\alpha)}{2(\beta^2 - \alpha^2)}, \\
c &= \frac{f(\alpha) - f(-\alpha)}{2\alpha(\beta^2 - \alpha^2)} \beta^2 - \frac{f(\beta) - f(-\beta)}{2\beta(\beta^2 - \alpha^2)} \alpha^2, \\
d &= \frac{f(\alpha) + f(-\alpha)}{2(\beta^2 - \alpha^2)} \beta^2 - \frac{f(\beta) + f(-\beta)}{2(\beta^2 - \alpha^2)} \alpha^2.
\end{align*}
\]

(3.4)

Proof. If we define a function \(g : G \rightarrow \mathbb{C} \) by

\[
g(x) = f(x) - \frac{f(\alpha) - f(-\alpha)}{2\alpha} x - \frac{f(\alpha) + f(-\alpha)}{2},
\]

(3.5)
then \(g(\alpha) = g(-\alpha) = 0 \) and \(g \) satisfies the inequality
\[
| (y-z)g(x) + (z-x)g(y) + (x-y)g(z) \\
- (x-z)(x-y)(y-z)h(x+y+z) | \leq \varphi(x,y,z) \quad \forall x,y,z \in G.
\] (3.6)

If we substitute \((x,\alpha,-\alpha)\) for \((x,y,z)\) in (3.6), then we have
\[
| g(x) - (x^2 - \alpha^2)h(x) | \leq \frac{1}{2|\alpha|}\varphi(x,\alpha,-\alpha) \quad \forall x \in G.
\] (3.7)

Replace \(z \) by \(-y\) in (3.6) to get
\[
| 2yg(x) - (x+y)g(y) + (x-y)g(-y) - 2y(x^2 - y^2)h(x) | \leq \varphi(x,y,-y)
\] (3.8)

for every \(x,y \in G \).

By making use of (3.7) and (3.8), we obtain
\[
\left| 2y\frac{y^2 - \alpha^2}{x^2 - \alpha^2}g(x) - (x+y)g(y) + (x-y)g(-y) \right|
\leq |2y\frac{y^2 - \alpha^2}{x^2 - \alpha^2}g(x)|
\leq |2y\frac{y^2 - \alpha^2}{x^2 - \alpha^2}g(x) - (x+y)g(y) + (x-y)g(-y) - 2y(x^2 - y^2)h(x) |
\]
\[+ \left| 2\frac{y(x^2 - y^2)}{x^2 - \alpha^2}h(x) - \frac{2y(x^2 - y^2)}{x^2 - \alpha^2}g(x) \right|
\leq \varphi(x,y,-y) + \frac{|y|}{|\alpha|}\frac{x^2 - y^2}{x^2 - \alpha^2}\varphi(x,\alpha,-\alpha)
\] (3.9)

or equivalently
\[
\left| 2y\frac{y^2 - \alpha^2}{x^2 - \alpha^2}g(x) - (x+y)g(y) + (x-y)g(-y) \right|
\leq \varphi(x,y,-y) + \frac{|y|}{|\alpha|}\frac{x^2 - y^2}{x^2 - \alpha^2}\varphi(x,\alpha,-\alpha), \quad \forall x \in G \setminus \{-\alpha,\alpha\}, \forall y \in G.
\] (3.10)

Multiply both sides by
\[
\frac{|x^2 - \alpha^2|}{2|y||y^2 - \alpha^2|}
\] (3.11)

to get
\[
\left| g(x) - \frac{(x^2 - \alpha^2)(x+y)}{2y(y^2 - \alpha^2)}g(y) + \frac{(x^2 - \alpha^2)(x-y)}{2y(y^2 - \alpha^2)}g(-y) \right|
\leq \frac{|x^2 - \alpha^2|}{2|y||y^2 - \alpha^2|}\varphi(x,y,-y)
\]
\[+ \frac{|x^2 - \alpha^2|}{2|\alpha||y^2 - \alpha^2|}\varphi(x,\alpha,-\alpha) \quad \forall x \in G, \ y \in G \setminus \{-\alpha,0,\alpha\}.
\] (3.12)

(We note that the inequality holds true also for \(x \in \{-\alpha,\alpha\} \).

If we replace \(y \) in the last inequality by a constant \(\beta \in G \setminus \{-\alpha,0,\alpha\} \) and if we consider definition (3.5), then we can easily show the validity of inequality (3.2) by making a tedious calculation.)
By using (3.2), (3.5), and (3.7), we may obtain
\[
| (x^2 - \alpha^2) h(x) - ax^3 - bx^2 + \alpha^2 ax + \alpha^2 b |
\]
\[
\leq | (x^2 - \alpha^2) g(x) |
+ | g(x) - f(x) + \frac{f(\alpha) - f(-\alpha)}{2\alpha} x + \frac{f(\alpha) + f(-\alpha)}{2} |
+ | f(x) - ax^3 - bx^2 - cx - d |
\]
\[
\leq \frac{|x^2 - \beta^2| + |\beta^2 - \alpha^2|}{2|\alpha| |\beta^2 - \alpha^2|} \varphi(x,\alpha,-\alpha) + \frac{|x^2 - \alpha^2|}{2|\beta| |\beta^2 - \alpha^2|} \varphi(x,\beta,-\beta) \quad \forall x \in G,
\]
(3.13)

from which we can deduce inequality (3.3).

\[\square \]

Corollary 3.2. Assume that the control function \(\varphi : G^3 \to [0,\infty) \) satisfies the asymptotic condition
\[
\lim_{|x| \to \infty} |x|^2 \varphi(x,y,-y) = 0 \quad \text{for each fixed } y \in G.
\]
(3.14)

If the functions \(f, h : G \to \mathbb{C} \) satisfy inequality (3.1) for any \(x, y, z \in G \), then there exist uniquely determined constants \(a, b, c, d \) such that inequalities (3.2) and (3.3) are valid for all \(x \in G \) and for all \(x \in G \setminus \{-\alpha, \alpha\} \), respectively.

Corollary 3.3. Suppose that the control function \(\varphi : G^3 \to [0,\infty) \) is given by
\[
\varphi(x,y,z) = \varepsilon |x - y| |y - z| |z - x| \quad \text{for some given } \varepsilon > 0.
\]
(3.15)

If the functions \(f, h : G \to \mathbb{C} \) satisfy inequality (3.1) for any \(x, y, z \in G \), then there exist constants \(a, b, c, d \) such that
\[
| f(x) - ax^3 - bx^2 - cx - d | \leq \frac{2 \varepsilon}{|\beta^2 - \alpha^2|} |x^2 - \alpha^2| |x^2 - \beta^2|,
\]
\[
| h(x) - ax - b | \leq \varepsilon + \frac{2 \varepsilon}{|\beta^2 - \alpha^2|} |x^2 - \beta^2| \quad \forall x \in G.
\]
(3.16)

We remark here that the last inequality is also valid for \(x = -\alpha \) or \(x = \alpha \).

Given a control function \(\psi : G^3 \to [0,\infty) \), we can also prove the Hyers-Ulam-Rassias stability of the functional equation (1.2) in the original setting:

Theorem 3.4. Let \(\alpha \in G \setminus \{0\} \) and \(\beta \in G \setminus \{-\alpha, 0, \alpha\} \) be given. If the functions \(f, h : G \to \mathbb{C} \) satisfy the inequality
\[
| f[x,y,z] - h(x+y+z) | \leq \psi(x,y,z) \quad \forall x, y, z \in G \text{ with } x \neq y, y \neq z, z \neq x,
\]
(3.17)

then there exist constants \(a, b, c, d \) such that
\[
| f(x) - ax^3 - bx^2 - cx - d | \leq \frac{|x^2 - \alpha^2| |x^2 - \beta^2|}{|\beta^2 - \alpha^2|} (\psi(x,\alpha,-\alpha) + \psi(x,\beta,-\beta)),
\]
(3.18)
\[
| h(x) - ax - b | \leq \psi(x,\alpha,-\alpha) + \frac{|x^2 - \beta^2|}{|\beta^2 - \alpha^2|} (\psi(x,\alpha,-\alpha) + \psi(x,\beta,-\beta)),
\]
(3.19)

for all \(x \in G \), where \(a, b, c, d \) are explicitly given in Theorem 3.1.
Proof. If we multiply both sides of (3.17) by $|x−y||y−z||z−x|$, then f satisfies inequality (3.1) with

$$q(x,y,z) = |x−y||y−z||z−x|ψ(x,y,z) \quad \forall x,y,z \in G. \quad (3.20)$$

(We note that (3.1) is also true for $x,y,z \in G$ with $x = y$, $y = z$, or $z = x$ for our case with (3.20).)

According to Theorem 3.1, there exist constants a,b,c,d such that inequalities (3.18) and (3.19) are valid for all $x \in G$ and for all $x \in G \{−α,α\}$, respectively. The only reason for excepting $−α$ and $α$ from the domain of validity of inequality (3.3) is that the denominator of the first term on the right-hand side contains a factor $|x^2−α^2|$. However, inequality (3.19) contains no denominator which vanishes at $x = α$ or $x = −α$. Therefore, we can include $−α$ and $α$ in the domain of validity of inequality (3.19), which completes the proof.

References

Soon-Mo Jung: Mathematics Section, College of Science & Technology, Hong-Ik University, 339-701 Chochiwon, Korea
E-mail address: smjung@wow.hongik.ac.kr

Prasanna K. Sahoo: Department of Mathematics, University of Louisville, Louisville, KY 40292, USA
E-mail address: saahoo@louisville.edu
Mathematical Problems in Engineering

Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>December 1, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation
http://www.hindawi.com