ELEMENTS IN EXCHANGE RINGS WITH RELATED COMPARABILITY

HUANYIN CHEN

(Received 23 December 1998)

Abstract. We show that if R is an exchange ring, then the following are equivalent: (1) R satisfies related comparability. (2) Given $a, b, d \in R$ with $aR + bR = dR$, there exists a related unit $w \in R$ such that $a + bw = dw$. (3) Given $a, b \in R$ with $aR = bR$, there exists a related unit $w \in R$ such that $a = bw$. Moreover, we investigate the dual problems for rings which are quasi-injective as right modules.

Keywords and phrases. Exchange ring, related comparability, related unit.

2000 Mathematics Subject Classification. Primary 16E50, 16L99.

Let R be an associative ring with identity. From [6], R is said to satisfy related comparability provided that for any idempotents $e, f \in R$ with $e = 1 + ab$ and $f = 1 + ba$ for some $a, b \in R$, there exists a $u \in B(R)$ such that $ueR \leq eR$ and $(1 - u)fR \leq (1 - u)eR$. The class of rings satisfying related comparability is quite large. It includes regular rings satisfying general comparability [10], one-sided unit regular rings [8] and partially unit-regular rings, while there still exist rings satisfying related comparability, which belong to none of the above classes (cf., [7, Example 10]).

In [4, 5], we studied related comparability over regular rings. In [6, 7], we investigated related comparability over exchange rings. It is shown that every exchange ring satisfying related comparability is separative [1]. Also, we show that related comparability over exchange rings is a Morita invariant. R is said to be an exchange ring if for every right R-module A and any two decompositions $A = M \oplus N = \bigoplus_{i \in I} A_i$, where $M \cong R$ and the index set I is finite, then there exist submodules $A'_i \subseteq A_i$ such that $A = M \oplus (\bigoplus_{i \in I} A'_i)$. Many authors have investigated exchange rings with some kind of comparability properties so as to study problems related partial cancellation properties of modules (see [1, 2, 6, 7, 12, 13]).

In this paper, we investigate related comparability over exchange rings by related units. Recall that $w \in R$ is said to be a related unit of R if there exists some $e \in B(R)$ such that $w = eu + (1 - e)v$ for some $u, v \in R$, where eu is right invertible in eR and $(1 - e)v$ is left invertible in $(1 - e)R$. $w \in R$ is said to be a semi-related unit of R if $w \in R$ is a related unit modulo $J(R)$. By virtue of semi-related units, we also give some new element-wise properties of rings which are quasi-injective as right modules.

Throughout, all rings are associative with identities. $B(R)$ denotes the set of all central idempotents of R and $r \cdot \text{ann}(b)(1 \cdot \text{ann}(b))$ denotes the right (left) annihilator of $b \in R$.
Lemma 1. Let R be an exchange ring. Then R satisfies related comparability if and only if so does the opposite ring R^{op} of R.

Proof. Since R is an exchange ring, by virtue of [11, Proposition], so is the opposite ring R^{op} of R. Assume that R satisfies related comparability. Given $a^{\text{op}}, b^{\text{op}} \in R^{\text{op}}$ with $a^{\text{op}}x^{\text{op}} + b^{\text{op}} = 1^{\text{op}}$, then we have $xa + b = 1$ in R. In view of [6, Theorem 4], there exists a $y \in R$ such that $x + by$ is a related unit of R. Thus, we have some $e \in B(R)$ such that $(x + by)e$ is right invertible in eR and $(x + by)(1 - e)$ is left invertible in $(1 - e)R$. By [5, Lemma 4], we claim that there are $z_1, z_2 \in R$ such that $(a + z_1 b)e$ is left invertible in eR and $(a + z_2 b)(1 - e)$ is right invertible in $(1 - e)R$. Let $z = z_1 + z_2 (1 - e)$. Then $a + zb$ is a related unit of R. Consequently, $a^{\text{op}} + b^{\text{op}}e^{\text{op}}$ is a related unit of R^{op}. By [6, Theorem 4], we conclude that R^{op} satisfies related comparability. The converse is clear from $R \cong (R^{\text{op}})^{\text{op}}$.

Theorem 2. Let R be an exchange ring. Then the following are equivalent:

1. R satisfies related comparability.
2. Given $a, b, d \in R$ with $aR + bR = dR$, there exists a related unit $w \in R$ such that $a + bt = dw$.
3. Given $a, b \in R$ with $aR = bR$, there exists a related unit $w \in R$ such that $a = bw$.
4. Given $a, b, d \in R$ with $Ra + Rb = Rd$, there exists a related unit $w \in R$ such that $a + tb = wd$.
5. Given $a, b \in R$ with $Ra = Rb$, there exists a related unit $w \in R$ such that $a = wb$.

Proof. (2)\Rightarrow(1). Trivial from [6, Theorem 4].

(1)\Rightarrow(2). Given $a, b, d \in R$ with $aR + bR = dR$. Let $g : dR \to dR/bR$ be the canonical map, $f_1 : R \to aR$ given by $r \to ar$ for any $r \in R$, and $f_2 : R \to bR$ given by $r \to br$ for any $r \in R$. Since $aR + bR = dR$, we know that $g f_1, g f_2$ are epimorphisms. On the other hand, R is a projective R-module. So there is some $\psi \in \text{End}_R R$ such that $g f_1 = g f_2 \psi$. Since $g f_1$ is an epimorphism, we also have some $\psi \in \text{End}_R R$ such that $g f_2 \psi = g f_3$. From $\alpha \psi + (1 - \alpha \psi) = 1$, there is a $y \in \text{End}_R R$ such that $\alpha + (1 - \alpha \psi)y = w$ is a related unit of $\text{End}_R R$. Therefore, we see that $g f_1 = g f_3 \alpha = g f_3 (\alpha + (1 - \alpha \psi)y) = g f_3 w$, and then $g (f_1 - f_3 w) = 0$. Thus, we have $\text{Im}(f_1 - f_3 w) \subseteq \text{Ker}g = bR$. By the projectivity of right R-module R, there exists some $B \in \text{End}_R R$ such that $f_2 B = f_1 - f_3 w$. Therefore, we claim that $a + bB(1) = f_1(1) + f_2(1)B(1) = f_3(1)w(1) = dw(1)$. It is easy to verify that $w(1)$ is a related unit of R.

(1)\Rightarrow(3). Given $a, b \in R$ with $aR = bR$, there exist $s, t \in R$ such that $a = bs$ and $b = at$. Thus, $b = bst$. Since $st + (1 - st) = 1$, by virtue of [6, Theorem 4], there exists some $z \in R$ such that $s + (1 - st)z = w$ is a related unit of R. Hence $a = bs = b(s + (1 - st)z) = bw$, as desired.

(3)\Rightarrow(1). Given any regular $a \in R$. Then there exists some $b \in R$ such that $a = aba$, so $aR = abR$. Thus $a = abw$ for some related unit $w \in R$. Since $ab + (1 - ab) = 1$, we see that $a + (1 - ab)w = (ab + (1 - ab))w = w$. By [5, Lemma 4], there is some $z \in R$ such that $b + z(1 - ab) = m$ is a related unit of R. Hence $a = aba = a(b + z(1 - ab))a = ama$. According to [6, Theorem 2], we claim that R satisfies related comparability.

(1)\iff(4)\iff(5). By [11, Proposition], we see that the opposite ring R^{op} of R is
Thus we can find some \(k \) then \(y \), then \(\text{Theorem 4} \), we can find a check that \(ky \) is a related unit.

Clearly, \(a \) is a related unit-regular, as asserted.

\begin{corollary}
Let \(R \) be an exchange ring. Then the following are equivalent:
\begin{enumerate}
\item \(R \) satisfies related comparability.
\item Given \(a, b \in R \) with \(aR + r \cdot \text{ann}(b) = R \), there exists some \(k \in r \cdot \text{ann}(b) \) such that \(ax + k = 1 \). Since \(R \) satisfies related comparability, by virtue of [6, Theorem 4], we can find a \(y \in R \) such that \(a + ky \) is a related unit of \(R \). It is easy to check that \(ky \) is a related unit-regular, as asserted.
\item Given \(a, b \in R \) with \(R \), there exist some \(s, t \in R \) such that \(a = bs \) and \(b = at \). Obviously, \(1 - st \in r \cdot \text{ann}(b) \). Since \(st + (1 - st) = 1 \), we have \(sR + r \cdot \text{ann}(b) = R \). Thus we can find some \(k \in r \cdot \text{ann}(b) \) such that \(s + k = w \) is a related unit of \(R \), and then \(a = bs = b(s + k) = bw \), as asserted.
\item \(R \) has the finite stable range. Then the following are equivalent:
\item \(R \) has the finite stable range.
\item Given \(a, b, d \in R \) with \(dR \) there exist some related unit-regular \(w_1, w_2 \in R \) such that \(aw_1 + bw_2 = d \).
\item Given \(a, b, d \in R \) with \(Ra + Rb = Rd \), there exist some related unit-regular \(w_1, w_2 \in R \) such that \(w_1a + w_2b = d \).
\end{enumerate}
\end{corollary}

\textbf{PROOF.} (1)\(\Rightarrow \)(2). Given \(a, b, d \in R \) with \(aR + bR = dR \), there exist some related unit-regular \(w_1, w_2 \in R \). For right \(R \)-module \(R^2 \), the two sets \(\{a, b\} \) and \(\{0, d\} \) generate the same right \(R \)-submodule of \(R^2 \). Thus, we can find \(A, B \in M_2(R) \) such that \((a, b) = (0, d)A \). Assume that \(A = (a_{ij}), B = (b_{ij}), I_2 = AB = (c_{ij}) \in M_2(R) \). Since \(AB = (I_2 - AB) = I_2 \), we have \((a_{21}, a_{22})(b_{12}, b_{22})^T + c_{22} = 1 \). Since \(R \) is an exchange ring satisfying related comparability, its stable range can only be \(1, 2 \) or \(\infty \) by [7, Theorem 3]. So \(2 \) is in the stable range of \(R \). Thus, we have some \((y_1, y_2) \in R^2 \) such that \((a_{21}, a_{22}) + c_{22}(y_1, y_2) \in R^2 \) is unimodular. Set \(Y = \left(\begin{array}{cc}
0 & 0 \\
y_1 & y_2
\end{array} \right) \). Then, we claim that the second row of \(A + (I_2 - AB)Y = U \) is unimodular. Clearly, \((0, d)U = (0, d)A = (a, b) \). Since \(u_{21}R + u_{22}R = R \), we can find orthogonal idempotents \(e_1 \in u_{21}R, e_2 \in u_{22}R \) such that \(e_1 + e_2 = 1 \). Assume that \(e_1 = u_{21}x_1, e_2 = u_{22}x_2 \). Let \(w_1 = x_1e_1, w_2 = x_2e_2 \). Then \(w_1 \) and \(w_2 \) are both regular in \(R \). Moreover, we have \(u_{21}w_1 + u_{22}w_2 = 1 \). By the related comparability of \(R \), we claim that both \(w_i \) are related unit-regular, as asserted.
(2) ⇒ (1). Given any regular \(x \in R \). Then \(x = x y x \) for a \(y \in R \). So we have \(xR + (1 - xy)R = R \), and then \(xw_1 + (1 - xy)w_2 = 1 \) for some related unit-regular \(w_1, w_2 \in R \). We easily check that \(x + (1 - xy)w_2s \in R \) is related unit for some \(s \in R \). Hence \(y + t(1 - xy) = w \), i.e., a related unit of \(R \). Consequently, we show that \(x = xyx = xwx \), as desired.

(1) \(\iff \) (3). Clear from the symmetry of related comparability. \(\square \)

Recall that a module \(M \) is quasi-injective if any homomorphism of a submodule of \(M \) into \(M \) extends to an endomorphism of \(M \). Now, we investigate rings which are quasi-injective as right modules. These extend the corresponding results in [3].

Lemma 5. Let \(R \) be quasi-injective as a right \(R \)-module. Given \(a, b \in R \) with \(aR + bR = R \), there exists some \(t \in R \) such that \(a + bt \) is a semi-related unit.

Proof. Given \(a, b \in R \) with \(aR + bR = R \), then \(\overline{a}(R/J(R)) + \overline{b}(R/J(R)) = R/J(R) \).

Since \(R \) is quasi-injective as a right \(R \)-module, by virtue of [9, Theorem 1], \(R/J(R) \) is a regular, right self-injective ring. Hence \(R \) is an exchange ring satisfying related comparability. According to Theorem 2, we can find a \(y \in R \) such that \(\overline{a} + \overline{b} \overline{y} = \overline{w} \) is a related unit of \(R/J(R) \). Therefore \(a + by = w + r \) for some \(r \in J(R) \). Clearly, \(w + r \) is a semi-related unit of \(R \), as desired. \(\square \)

Theorem 6. Let \(R \) be quasi-injective as a right \(R \)-module. Then the following hold:

1. Given \(a, b \in R \) with \(r \cdot \text{ann}(a) = r \cdot \text{ann}(b) \), there exists a semi-related unit \(w \in R \) such that \(a = wb \).

2. Given \(a, b \in R \) with \(l \cdot \text{ann}(a) = l \cdot \text{ann}(b) \), there exists a semi-related unit \(w \in R \) such that \(a = bw \).

Proof. (1) Given \(a, b \in R \) with \(r \cdot \text{ann}(a) = r \cdot \text{ann}(b) \). Since \(R \) is quasi-injective as a right \(R \)-module, by [3, Lemma 3.2], we have \(Ra = Rb \). Assume that \(a = sb, b = ta \) for some \(s, t \in R \). Then \(b = tsb \). Consequently, there exists some \(y \in R \) such that \(t + (1 - ts)y \) is a semi-related unit of \(R \) by Lemma 5. Using [5, Lemma 4], we have some \(z \in R \) such that \(s + z(1 - ts) = w \) is a semi-related unit of \(R \). Therefore, we claim that \(a = sb = (s + z(1 - ts))b = wb, \) as desired.

(2) Given \(a, b \in R \) with \(l \cdot \text{ann}(a) = l \cdot \text{ann}(b) \). Similarly to the consideration above, we have \(aR = bR \). Assume that \(a = bs, b = at \) for some \(s, t \in R \). Then \(b = bst \). From \(st + (1 - st) = 1 \), we can find a \(y \in R \) such that \(s + (1 - st)y = w \) is a semi-related unit of \(R \). Therefore \(a = bs = b(s + (1 - st)y) = bw \), whence the result. \(\square \)

Corollary 7. Let \(R \) be quasi-injective as a left \(R \)-module. Then the following hold:

1. Given \(a, b \in R \) with \(r \cdot \text{ann}(a) = r \cdot \text{ann}(b) \), there exists a semi-related unit \(w \in R \) such that \(a = wb \).

2. Given \(a, b \in R \) with \(l \cdot \text{ann}(a) = l \cdot \text{ann}(b) \), there exists a semi-related unit \(w \in R \) such that \(a = bw \).

Proof. Applying Theorem 6 to the opposite ring \(R^{\text{op}} \) of \(R \), we complete the proof. \(\square \)

Theorem 8. Let \(R \) be a ring which is quasi-injective as a right \(R \)-module. Then the following hold:
we claim that a semi-related unit.

Moreover, we see that $R/J(R)$ satisfies related comparability. In view of Theorem 2, there exists $t \in R$ such that $a + tb = w + k$ with w is a semi-related unit of R. Thus, there is some $k \in J(R)$ such that $a + tb = w + k$. Clearly, $w + k$ is also a semi-related unit. Thus, we claim that $a + tb$ is a semi-related unit of R.

(2) Given $a, b \in R$ with $1 \cdot \text{ann}(a) \cap 1 \cdot \text{ann}(b) = 0$, analogously to [3, Proposition 3.4], we claim that $a \cdot b + bR = R$. Thus, $(R/J(R)) \cdot a + (R/J(R)) \cdot b = R/J(R)$. Similarly to the consideration above, we show that $R/J(R)$ satisfies related comparability. In view of Theorem 2, there exists $t \in R$ such that $a + tb = w + k$ with w is a semi-related unit and $k \in J(R)$. Since $w + k$ is also a semi-related unit, the result follows.

Corollary 9. Let R be a ring which is quasi-injective as a left R-module. Then the following hold:

1. Given $a, b \in R$ with $r \cdot \text{ann}(a) \cap r \cdot \text{ann}(b) = 0$, there exists $t \in R$ such that $a + tb$ is a semi-related unit.
2. Given $a, b \in R$ with $1 \cdot \text{ann}(a) \cap 1 \cdot \text{ann}(b) = 0$, there exists $t \in R$ such that $a + bt$ is a semi-related unit.

Proof. Applying Theorem 8 to the opposite ring R^{op} of R, we easily obtain the result.

Since every regular, right (left) self-injective ring is a quasi-injective ring with trivial Jacobson. As an immediate consequence of Theorem 6, Corollary 7, Theorem 8, and Corollary 9, we now derive the following.

Corollary 10. Let R be a regular, right (left) self-injective ring. Then the following hold:

1. Given $a, b \in R$ with $r \cdot \text{ann}(a) = r \cdot \text{ann}(b)$, there exists a related unit $w \in R$ such that $a = wb$.
2. Given $a, b \in R$ with $1 \cdot \text{ann}(a) = 1 \cdot \text{ann}(b)$, there exists a related unit $w \in R$ such that $a = bw$.
3. Given $a, b \in R$ with $r \cdot \text{ann}(a) \cap r \cdot \text{ann}(b) = 0$, there exists $t \in R$ such that $a + tb$ is a related unit.
4. Given $a, b \in R$ with $1 \cdot \text{ann}(a) \cap 1 \cdot \text{ann}(b) = 0$, there exists $t \in R$ such that $a + bt$ is a related unit.

References

Chen: Department of Mathematics, Hunan Normal University, Changsha 410006, China

E-mail address: chyzxl@sparc2.hunnu.edu.cn
Special Issue on
Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Computational methods**: artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning
- **Application fields**: asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects**: decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk