REMARKS ON QUASILINEAR EVOLUTIONS EQUATIONS

JAMES E. MUNOZ RIVERA

NATIONAL LABORATORY OF SCIENTIFIC COMPUTATION
Rua Lauro Muller 455
AND
IMUFRJ. P. O. Box 68530. Rio de Janeiro. R.J. Brasil
(Received June 6, 1990 and in revised form July 21, 1990)

ABSTRACT. In this paper we study the existence result of classical solutions for the quasilinear equation
\[u_{tt} - \Delta u - H \int_{\Omega} |\nabla u|^2 dx \Delta u_{tt} = f \]
with initial data \(u(0) = u_0, \ u_t(0) = u_1 \) and homogeneous boundary conditions.

KEY WORDS.- Partial differential equation, quasilinear evolution equation, boundary problem.

AMS(MOS): Subject classification, 35B35, 35A05.

1. INTRODUCTION: Let \(\Omega \) be an open and bounded set of \(\mathbb{R}^n \), with smooth boundary \(\Gamma \). Let's denote by \(Q \) the cylinder \(Q = \Omega \times [0,T] \) and by \(\Sigma \) its lateral boundary. Our notations and function spaces are standart and follows the same pattern as Lions's book [2].

Ebihara et al [1] was proved that there exist only one classical solution for a semilinear model, given by following initial-boundary value problem
\[
\begin{align*}
 u_{tt} - \Delta u - H \int_{\Omega} |\nabla u|^2 dx \Delta u_{tt} &= f & \text{in } Q \quad (1.1) \\
 u(0) &= u_0, \ u_t(0) &= u_1 & \text{in } \Omega \quad (1.2)
\end{align*}
\]
\[u(x,t) = 0 \quad \text{in} \; \Sigma \quad (1.2) \]

when the following hypotheses hold:

(i) \(M(\lambda) \in C([0, +\infty) \) and there exist positive constants \(a, \rho \) such that the following inequality is valid:
\[M(\lambda) \geq a\lambda^2 + \rho, \quad \forall \lambda \in (0, +\infty) \]

(ii) There exists a non-negative function \(K(\lambda) \) satisfying:
\[|\frac{d}{d\lambda} M(\lambda)| \lambda \leq K(\lambda) \lambda \quad \forall \lambda \geq 0 \]

(iii) The initial data are such that:
\[u_0, \; u_1 \in D(A^{(l+1)/2}), \; l \geq 1 \]
\[f, \; \frac{d}{dt} f \in C(0, T; D(A^{1/2})), \; l \geq 1 \]

Where \(A = -\Delta \) and for \(D(A^\alpha) \) we are denoting the domain of the operator \(A^\alpha \). The main result of this paper is to prove the existence result of classical solutions for system (1.1)-(1.3) when

Hi. \(M \) is a continuous function such that: \(M(\lambda) \geq m_0 > 0 \)

H2. \(f \in C(0, T; D(A^{1/2})) \), \(l \geq 2 \) and \(u_0, \; u_1 \in D(A^{(l+1)/2}), \; l \geq 2 \)

2. THE MAIN RESULT: Let's denote by \(w_1, ..., w_m \) and by \(\lambda_1, ..., \lambda_m \) the \(m \) first orthonormal eigen functions and eigen values of the Laplacian respectively. Let's denote by \(V_m \) the finite dimensional vector space generated by the first \(m \) eigen functions and by \(P_m \) the projector operator on \(V_m \), that is:
\[P_m v = \sum_{i=1}^{m} \left(\int_{\Omega} v(x) w_i(x) dx \right) w_i \]

It is easy to see that \(A^2 P_m = P_m A^2 \) in \(D(A^2) \). Moreover, we have that
\[\int_{\Omega} |P_m w|^2 dx \leq \int_{\Omega} |w|^2 dx \quad (2.1) \]

Then the approximated problem is defined as follows.
\[u_{tt}^{(m)} - \Delta u^{(m)} - M \int_{\Omega} |\nabla u^{(m)}|^2 dx \Delta u^{(m)} = f_m \quad (2.2) \]
\[u^{(m)}(0) = u_0^m, \quad u_t^{(m)}(0) = u_1^m \text{ in } \Omega \]

where
\[u^{(m)}(t) = \sum_{i=1}^{m} s_i^{(m)}(t) w_i, \quad u_0^m = P_m u_0, \quad u_1^m = P_m u_1 \]

Before to prove the main result of this paper we will show the following Lemmas:

LEMMA 2.1 Let's suppose that \(u, \; u_t, \; u_{tt} \in C(0, T; L^2(\Omega)) \) and
\[\int_{\Omega} |u_{tt}(x,t)|^2 dx \leq a + b \int_{\Omega} |u(x,t)|^2 dx \]
Then we have:
\[
\int_{\Omega} |u(x,t)|^2 dx \leq C e^{\frac{1}{2} \int_{0}^{t} \int_{\Omega} |\nabla u(x,\xi)|^2 d\xi dx} e^{\frac{1}{2} \int_{0}^{t} \int_{\Omega} |u(x,\xi)|^2 d\xi dx}
\]

PROOF. Since
\[
v(x,t) = \int_{0}^{t} u_t(x,\xi) d\xi + u(x,0) \quad \text{a.e. in } \Omega
\]
we have:
\[
|v(x,t)| \leq \sqrt{\int_{0}^{t} \int_{\Omega} |u_t(x,\xi)|^2 d\xi dx} + |u(x,0)|
\]
From where it follows
\[
\int_{\Omega} |v(x,t)|^2 dx \leq 2 \int_{0}^{t} \int_{\Omega} |u_t(x,\xi)|^2 d\xi dx + 2 \int_{\Omega} |u(x,0)|^2 dx
\]
Applying the relation above to \(u_t \) we have:
\[
\int_{\Omega} |u_t(x,t)|^2 dx \leq 2t \int_{0}^{t} \int_{\Omega} |u_{tt}(x,\xi)|^2 d\xi dx + 2t \int_{\Omega} |u(x,0)|^2 dx
\]
From the two last inequalities we conclude:
\[
\int_{\Omega} |v(x,t)|^2 dx \leq 4t |u(x,0)|^2 dx + 2 \int_{\Omega} |u(x,0)|^2 dx
\]
Finally, from the hypotheses, the last inequality and Gronwall's inequality the result of Lemma 2.1 follows.

LEMMA 2.2. Let suppose that \(w \in C([0,T];L^2(\Omega)) \), then we have that \(P_m w \to w \) strong in \(C([0,T];L^2(\Omega)) \).

PROOF. By the pointwise convergence of \(P_m w \) in \(t \), it's sufficient to show that \(P_m w \) is a Cauchy sequence in \(C([0,T];L^2(\Omega)) \). Let's take \(\varepsilon > 0 \), by the continuity of \(w \) we have that there exist \(\delta > 0 \) such that
\[
|t - s| < \delta \Rightarrow \int_{\Omega} |u(x,t) - u(x,s)|^2 dx < \frac{\varepsilon}{3} \quad (2.3)
\]
By the compactness of \([0,T]\), there exist \(s_1, s_2, \ldots, s_N \) satisfying
\[
[0,T] \subset \bigcup_{i=1}^{N}]s_i - \delta, s_i + \delta[
\]
and from the pointwise convergence of \(P_m w \) we conclude that there exists a positive number \(N \) such that
\[
\int_{\Omega} |P_m w(x,s_i) - P_m w(x,s_i)|^2 dx < \frac{\varepsilon}{3} \quad \forall m, n \geq N, i = 1, \ldots, N \quad (2.4)
\]
Finally by (2.1), (2.3), (2.4) and the following inequality
\[
\left(\int_{\Omega} |P_m w(x,t) - P_m w(x,t)|^2 dx \right)^{1/2} \leq \left(\int_{\Omega} |P_m w(x,t) - P_m w(x,s_i)|^2 dx \right)^{1/2} + \left(\int_{\Omega} |P_m w(x,s_i) - P_m w(x,s_i)|^2 dx \right)^{1/2} + \left(\int_{\Omega} |P_m w(x,s_i) - P_m w(x,t)|^2 dx \right)^{1/2}
\]
the result of Lemma 2.2 follows.

THEOREM 2.3. Let's suppose that \(H_1 \) and \(H_2 \) are valid. Then there exists
(1.1), (1.2) and (1.3). Remains to show that \(u \) is a classical solution. Let's note that \(u_{(m)}^{(\mu)} \) belongs to \(C^2(\Omega;\mathcal{A}^{(l+1/2)}) \) for all \(m \in \mathbb{N} \), then in order to prove that \(u \in C^2(\Omega;\mathcal{C}(\Omega)) \), we will show that \((u_{(m)}^{(\mu)})_{m \in \mathbb{N}} \) is a Cauchy's sequence in \(L^\infty(\Omega;\mathcal{A}^{(l+1/2)}) \), for all \(l \geq 2 \). In fact let \(\mu \in \mathbb{N} \), then

\[
u_{(m)}^{(\mu)} - \Delta \nu_{(m)}^{(\mu)} - \mathcal{M} \int_\Omega |\nabla u_{(m)}^{(\mu)}|^2 dx \Delta u_{(m)}^{(\mu)} = \mu f
\]

From (2.2) and the above equation we have:

\[
C \frac{u_{(m)}^{(\mu)}}{u_{(m)}^{(\mu)}} - \Delta \frac{u_{(m)}^{(\mu)}}{u_{(m)}^{(\mu)}} - \mathcal{M} \int_\Omega |\nabla u_{(m)}^{(\mu)}|^2 dx \Delta \frac{u_{(m)}^{(\mu)}}{u_{(m)}^{(\mu)}} = \mathcal{M} f
\]

where

\[
\mathcal{M} f = \left(\mathcal{M} \int_\Omega |\nabla u_{(m)}^{(\mu)}|^2 dx - \mathcal{M} \int_\Omega |\nabla u_{(m)}^{(\mu)}|^2 dx \Delta u_{(m)}^{(\mu)} + \mu f - \mu f \right)
\]

Multiplying the system above by \(\mathcal{M} \frac{u_{(m)}^{(\mu)}}{u_{(m)}^{(\mu)}} \) and integrating in \(\Omega \) we have

\[
\mathcal{M} \int_\Omega \left| \mathcal{M} \frac{u_{(m)}^{(\mu)}}{u_{(m)}^{(\mu)}} \right|^2 dx \leq \mathcal{M} \int_\Omega \left| \mathcal{M} \frac{u_{(m)}^{(\mu)}}{u_{(m)}^{(\mu)}} \right|^2 dx + \mathcal{M} \int_\Omega \left| \mathcal{M} \frac{u_{(m)}^{(\mu)}}{u_{(m)}^{(\mu)}} \right|^2 dx
\]

From which it follows that:

\[
\mathcal{M} \int_\Omega \left| \mathcal{M} \frac{u_{(m)}^{(\mu)}}{u_{(m)}^{(\mu)}} \right|^2 dx \leq \mathcal{M} \int_\Omega \left| \mathcal{M} \frac{u_{(m)}^{(\mu)}}{u_{(m)}^{(\mu)}} \right|^2 dx + \mathcal{M} \int_\Omega \left| \mathcal{M} \frac{u_{(m)}^{(\mu)}}{u_{(m)}^{(\mu)}} \right|^2 dx
\]

From Lemma (3.1) and the last inequality we have

\[
\mathcal{M} \int_\Omega \left| \mathcal{M} \frac{u_{(m)}^{(\mu)}}{u_{(m)}^{(\mu)}} \right|^2 dx \leq \mathcal{M} \int_\Omega \left| \mathcal{M} \frac{u_{(m)}^{(\mu)}}{u_{(m)}^{(\mu)}} \right|^2 dx + \mathcal{M} \int_\Omega \left| \mathcal{M} \frac{u_{(m)}^{(\mu)}}{u_{(m)}^{(\mu)}} \right|^2 dx
\]

Finally from Lemma 2.2 and since \(u_0, u_1 \in \mathcal{A}^{(l+1/2)} \) we have that

\[
A^{l/2} \mathcal{M} f + 0 \quad \text{as} \quad m, \mu \to + \infty \quad \text{strongly in} \quad C(\Omega,\mathcal{L}^2(\Omega))
\]

Then we have that \((u_{(m)}^{(\mu)}) \) a Cauchy sequence in \(L^\infty(\Omega;\mathcal{A}^{(l+1/2)}) \) and the proof is now complete.

REMARK 2.4. UNIQUENESS: If \(H \) is locally Lipschitz, then we have uniqueness. In fact, let \(u \) and \(v \) be two solutions, putting \(w = u - v \) we have

\[
w_{(m)} - \Delta w - \mathcal{M} \int_\Omega |\nabla u_{(m)}|^2 dx \Delta w_{(m)} = \mathcal{M} \int_\Omega |\nabla u_{(m)}|^2 dx - \mathcal{M} \int_\Omega |\nabla u_{(m)}|^2 dx \Delta w_{(m)}
\]

Multiplying by \(\Delta w_{(m)} \) applying HI and the Lipschitz condition on \(H \) we have that there exists a positive constant \(c_1 \) such that:

\[
\mathcal{M} \int_\Omega |\Delta w_{(m)}|^2 dx \leq \mathcal{M} \int_\Omega |\Delta w_{(m)}|^2 dx + c_1 \mathcal{M} \int_\Omega |\Delta w_{(m)}|^2 dx + c_1 \mathcal{M} \int_\Omega |\Delta w_{(m)}|^2 dx
\]
only one classic solution of system \((1.1), (1.2)\) and \((1.3)\)

Proof. Since \(DK^{(1+1)/2}\) \(\subset H^{1+1}(\Omega) \subset C^0(\Omega)\) if \(1+1 > \frac{n}{2} + k\), it's sufficient to show that there exists a solution of system \((1.1), (1.2)\) and \((1.3)\) satisfying \(v \in C^0(0,T;DK^{(1+1)/2})\). In order to prove it let's multiply \((2.2)\) by \(A_t^{(m)}u_{tt}\) and integrating in \(\Omega\) we have:

\[
\int_\Omega |A^2 u^{(m)}| dx + \int_\Omega K \int \nabla u^{(m)} \nabla u^{(m)} dx \int A^2 u^{(m)} dx = \int_\Omega A_t u^{(m)} A_t^{(m)} dx + \int_\Omega f |A^2 u^{(m)} dx.
\]

By \(H1\) and \(H2\) the last equality becomes:

\[
m_\delta \int_\Omega |A^2 u^{(m)}|^2 dx \leq \int_\Omega |A^2 u^{(m)} A^2 u^{(m)}| dx + \int_\Omega |A^2 f A^2 u^{(m)}| dx
\]

from where it follows that:

\[
\frac{1}{\lambda^2} \int_\Omega |A^2 u^{(m)}|^2 dx \leq \int_\Omega |A^2 f A^2 u^{(m)}|^2 dx + \int_\Omega |A^2 u^{(m)}|^2 dx.
\]

By Lemma \(2.1\) and the above inequality we obtain:

\[
\frac{1}{\lambda^2} \int_\Omega |A^2 u^{(m)}(x,t)|^2 dx \leq \int_\Omega |A^2 f A^2 u^{(m)}|^2 dx + 2 \int_\Omega |A^2 u^{(m)}|^2 dx + 4 \int_\Omega |A^2 u^{(m)}|^2 dx Exp\left(\frac{\rho}{m_\delta} t^4\right).
\]

From \((2.5)\) and since:

\[
\int_\Omega |A^2 u^{(m)}(x,t)|^2 dx \leq 2 \int_\Omega |A^2 u^{(m)}(x,t)|^2 dx + 2 \int_\Omega |A^2 u^{(m)}|^2 dx
\]

we conclude that there exists a subsequence of \(\{u^{(m)}\}_{m \in \mathbb{N}}\) which we still denoting of the same way and a function \(u \in L^0(0,T;DK^{(1+1)/2})\), satisfying

\[
\begin{align*}
\liminf_{m \to \infty} u^{(m)}(x,t) &= u(x,t) \quad \text{weak star in } L^0(0,T;DK^{(1+1)/2}) \\
\liminf_{m \to \infty} u^{(m)}(x,t) &= u(x,t) \quad \text{weak star in } L^0(0,T;DK^{(1+1)/2}) \\
\liminf_{m \to \infty} u^{(m)}(x,t) &= u(x,t) \quad \text{weak star in } L^0(0,T;DK^{(1+1)/2})
\end{align*}
\]

From the last convergences and the Lions-Aubin's theorem (see Lions's [2], theorem 5.1, chap 1) we conclude in particular that:

\[
u^{(m)} \to u\quad \text{strongly in } C(0,T;H^0(\Omega)) \quad \text{as } m \to \infty
\]

By standard methods we can prove that \(u\) is a strong solution of system
from where it follows that there exists c_2 such that:

$$\int_{\Omega} |\Delta \omega|^2 dx \leq c_2 \int_{\Omega} |\omega|^2 dx$$

By Lemma 2.1, since $\omega(x,0) = \omega_t(x,0) = 0$, we obtain that $\Delta \omega = 0$, and from this it follows that $\omega = 0$, that is $u = v \circ$.

REFERENCES

Mathematical Problems in Engineering

Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>December 1, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru