ON THE SOLVABILITY OF A SYSTEM OF WAVE AND BEAM EQUATIONS

JUHA BERKOVITS

Received 27 October 2000

We prove new existence results for linearly coupled system of wave and beam equations. The main concept is the matrix spectrum which is a natural extension of standard definition. Using invariant subspaces together with degree theoretic argument we obtain information about the range of the abstract operator.

1. Introduction

We consider a system of wave and beam operators with linear coupling and damping having the form

\[
\begin{align*}
\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} + a_{11} u - a_{12} v &= g_1(t, x, u, v) + h_1(t, x) \quad \text{in } \Omega_1, \\
\frac{\partial^4 v}{\partial t^4} + \frac{\partial^2 v}{\partial t^2} + \beta \frac{\partial v}{\partial t} - a_{21} u - a_{22} v &= g_2(t, x, u, v) + h_2(t, x) \quad \text{in } \Omega_1, \\
\end{align*}
\]

(1.1)

where \(h = (h_1, h_2) \) is a given function in \(L^2(\Omega; \mathbb{R}^2) \) with \(\Omega = [0, 2\pi] \times [0, \pi] \), \(\beta > 0 \), the function \(g(t, x, s) = (g_1(t, x, s), g_2(t, x, s)) \) from \(\Omega \times \mathbb{R}^2 \) to \(\mathbb{R}^2 \) is \(2\pi \)-periodic in \(t \), measurable in \((t, x)\) for each \(s \in \mathbb{R}^2 \) and continuous in \(s \) for almost all \((t, x) \in \Omega \). Moreover, we assume that \(g(t, x, \cdot) \) has at most linear growth.

With suitable nonlinearity \(g \) (1.1) provides a reasonable model for a suspension bridge, where the main cable is described as a vibrating string and the road bed as a vibrating beam.

Copyright © 2001 Hindawi Publishing Corporation
2000 Mathematics Subject Classification: 47J05, 47H11, 35B10
URL: http://aaa.hindawi.com/volume-6/S1085337501000562.html
We will study the existence of weak solutions and therefore it is relevant to transform system (1.1) into the operator equation

\[D_2 u - \beta u - N(u) = h, \quad u \in D(D_2) \]

in \(\mathcal{X} = [L_2(\Omega)]^2 \), where \(\mathcal{X} \) is the Nemyskii operator generated by \(g \), \(D_1 \) is the constant multiplication operator induced by the coupling matrix \(A = (a_{ij}) \) and \(\mathcal{X} : D(D_2) \subset \mathcal{X} \rightarrow \mathcal{X} \) is the abstract realization of the linear differential operator.

We define the matrix spectrum of \(D_2 \) as the set

\[\sigma_{M}(D_2) = \{ A \in \mathbb{R}^{2 \times 2} \mid (D_2 - \alpha)^{-1} : \mathcal{X} \rightarrow \mathcal{X} \text{ or is not bounded} \} \]

The set \(\sigma_{M}(D_2) \) is closed in \(\mathbb{R}^{2 \times 2} \) and hence the “resolving set” of \(D_2 \) is divided into open components. We will apply the extension of the Leray-Schauder degree introduced by Berkovits and Mustonen [4] for a class of mappings related to our model problem. If \(A \in \sigma_{M}(D_2) \), we can use the homotopy argument to obtain nonresonance results for (1.2) (see [8]). In this note we deal with the resonance case \(A \in \sigma_{M}(D_2) \). Using suitable reduction to invariant subspaces we can find solution for (1.2), provided \(N \) and \(h \) satisfy some auxiliary symmetry conditions.

In what follows, we consider the reduced equation

\[D_2|_V u - \beta|_V u - N|_V(u) = h, \quad u \in D(D_2) \cap V, \quad h \in V, \]

is also a weak solution for the original equation (1.2). It is possible that \(A \in \sigma_{M}(D_2) \) but \(D_2|_V \) is injective in the subspace \(V \) and hence we can apply the known nonresonance results for the reduced equation (1.4).

The method of invariant subspaces is widely used in the study of ordinary differential equations and for a single wave equation by Coron, Vejvoda, among others. (See [5, 9, 11, 15].)

Problem (1.1) has been studied mainly in the case of gradient type nonlinearities \(N \) with no damping, that is, with \(\beta = 0 \). We refer the reader to the papers of Brezis and Nirenberg [10], Amann [1], Mawhin [13, 14], Fonda and Mawhin [12], where also a survey on the recent results and relevant references can be found. For previous results on the existence of the periodic solutions of the systems of wave equations we also refer to [2, 6, 7].

2. Prerequisites

Let \(H \) be a real separable Hilbert space with inner product \(\langle \cdot, \cdot \rangle \) and corresponding norm \(\| \cdot \| \). We recall some basic definitions. A mapping \(F : H \rightarrow H \) is

- **bounded**, if it takes any bounded set into a bounded set,
- **demicontinuous**, if \(u_j \rightarrow u \) (norm convergence) implies \(F(u_j) \rightharpoonup F(u) \) (weak convergence).
• **monotone**, if \((F(u) - F(v), u - v) \geq 0 \) for all \(u, v \in H \).
• **strongly monotone**, if there exists \(\alpha > 0 \) such that \((F(u) - F(v), u - v) \geq \alpha \| u - v \|^2 \) for all \(u, v \in H \).
• **of class \((S^+ +)\)**, if for any sequence with \(u_j \rightharpoonup u \), \(\limsup (F(u_j), u_j - u) \leq 0 \), it follows that \(u_j \rightarrow u \).
• **quasimonotone**, if for any sequence \(u_j \rightharpoonup u \), \(\limsup (F(u_j), u_j - u) \geq 0 \).

The class of mappings considered in this paper is given in the following definitions.

Definition 2.1. A linear densely defined operator \(L : D(L) \subset H \rightarrow H \) is admissible in \(H \), if it is closed, normal, \(\text{Im} L = (\text{Ker} L)^\perp \) and the inverse \(K \) of the restriction of \(L \) to \(\text{Im} L \cap D(L) \) is compact on \(\text{Im} L \).

Denote by \(P \) and \(Q = I - P \) the orthogonal projections to \(\text{Ker} L \) and \(\text{Im} L = (\text{Ker} L)^\perp \), respectively.

Definition 2.2. A bounded, demicontinuous map \(N : H \rightarrow H \) is an admissible perturbation in \(H \), if there exists a bounded demicontinuous map \(S : H \rightarrow H \) of class \((S^+ +)\) such that \(PQN = PS \).

We are interested in the case where \(L \) is not selfadjoint and therefore we include the complex spectrum of \(L \) into consideration. We recall that the complexification \(H_C = H + iH \) of \(H \) has the usual linear structure and inner product \(\langle \cdot, \cdot \rangle_C \) induced by \(H \). For each \(w = u + iv \in H_C \) it is natural to denote \(\bar{w} = u - iv \). We define the complex linear operator \(L_C : D(L_C) \subset H_C \rightarrow H_C \) by setting \(D(L_C) = D(L) + iD(L) \) and \(L_C(w + iv) = Lu + iLv \) for all \(u + iv \in D(L_C) \). It is clear that \(\text{Im} L_C = (\text{Ker} L_C)^\perp \), \(L_C \) is normal and its partial inverse \(K_C \) is compact. Consequently, \(L_C \) has a pure point spectrum \(\sigma_C(L) = \{ \pm \mu_j \}_{j\in\mathbb{Z}} \) with the corresponding orthonormal basis \(\{ \phi_j \}_{j\in\mathbb{Z}} \) of \(H_C \) such that
\[
L_C \phi_j = \mu_j \phi_j \quad \forall j \in \mathbb{Z}. \tag{2.1}
\]

Note that for any complex eigenvalue \(\mu_j = \alpha_j + i\beta_j \) also its complex conjugate \(\bar{\mu}_j = \alpha_j - i\beta_j \) is an eigenvalue with corresponding eigenvector \(\bar{\phi}_j \). For each \(u \in D(L) \) we have the spectral representation
\[
Lu = \sum_{j\in\mathbb{Z}} u \langle u, \phi_j \rangle_C \bar{\phi}_j. \tag{2.2}
\]

For any map \(N : H \rightarrow H \) the equation
\[
Lu - N(u) = 0, \quad u \in D(L), \tag{2.3}
\]
can be written equivalently as
\[
Q(u - KQN(u)) + PN(u) = 0, \quad u \in H. \tag{2.4}
\]
The equivalence of (2.3) and (2.4) is due to the fact that $KQ - P$ is the right inverse of $L - P$ if N is bounded, demicontinuous, and of class (S_+), then there exists a topological degree for mappings of the form $F = Q(I + C) + PN$, where C is compact (see [4]). In fact, it is sufficient that N is admissible, that is, there exists an auxiliary bounded demicontinuous map $S : H \to H$ of class (S_+) such that $PN = PS$. This observation is quite obvious, since only the P-component of N appears in F. However, it has some interesting implications as we will see later on (see also [3]). The degree theory given in [4] is a unique extension of the classical Leray-Schauder degree. It is single-valued and has the usual properties of degree, such as additivity and invariance under homotopies.

Let the corresponding degree function be d_{H}. In order to simplify our notations we define a further degree function “\deg_{H}” by setting

$$\text{deg}_{H} (L - N, G, 0) \equiv d_{H} (Q(I - KQN) + PN, G, 0)$$

(2.5)

for any open set $G \subset H$ such that $0 /\in (L - N)(\partial G \cap D(L))$. By the term reference map we refer to any linear injection $L - N$ with L and N admissible. For a reference map we have (see [4])

$$\text{deg}_{H} (L - N_0, G, y) \neq 0$$

for any $y \in (L - N_0)(D(L) \cap G)$. (2.6)

3. On systems

Let H be a real separable Hilbert space and denote $\mathcal{K} = H^n$ with $n \geq 2$. We assume that $L_k : D(L_k) \subset H \to H$ is a linear densely defined closed, normal operator with $\text{Im} L_k = (\text{Ker} L_k)^\perp$ for each $k = 1, 2, \ldots, n$. The inverse K_k of the restriction of each L_k to $\text{Im} L_k \cap D(L_k)$ is a bounded linear operator on $\text{Im} L_k$.

We shall further assume that the inverse K_k of each L_k is compact and hence each L_k is admissible. We define the diagonal operator $\mathcal{D} : D(\mathcal{D}) \subset \mathcal{H}^2 \to \mathcal{H}^2$ by setting

$$\mathcal{D} u = (L_1 u_1, L_2 u_2, \ldots, L_n u_n)^T, \quad u = (u_1, u_2, \ldots, u_n)^T \in D(\mathcal{D}),$$

(3.1)

where $D(\mathcal{D}) = D(L_1) \times D(L_2) \times \cdots \times D(L_n)$. Now the complexification $\mathcal{H}^2 \subset \mathcal{K} = \mathcal{H} + i\mathcal{H} = (\mathcal{H})^\mathbb{C}$ as well as \mathcal{D} inherits the properties of the component operators. We shall use the notations \cdot, \cdot and $\| \cdot \|$ for the inner product and norm in any real Hilbert space and the subscript “\mathbb{C}” whenever the norm, inner product or spectrum is complex. For simplicity we shall frequently use the same symbol for an operator and its complexification. The inverse $\mathcal{D}^{-1} : \text{Im} \mathcal{D} \to \text{Im} \mathcal{D}$ is compact with $\mathcal{D} u = (K_1 u_1, K_2 u_2, \ldots, K_n u_n)^T$ for all $u = (u_1, u_2, \ldots, u_n)^T \in \text{Im} \mathcal{D}$. We denote by \mathbb{P} and \mathbb{P}^\perp the orthogonal projections onto $\text{Ker} \mathcal{D}$ and $\text{Im} \mathcal{D}$, respectively. Let $N : \mathcal{K} \to \mathbb{R}$ be a (possibly nonlinear) bounded demicontinuous map. As described in Section 2, a topological degree is available for maps of the form $\mathcal{D} - N$, where \mathcal{D} is admissible and N is any admissible perturbation.
Consider first linear maps of the following type. Let $A = (a_{lk})$ be a real $n \times n$-matrix and $\mathcal{L} : \mathbb{R} \to \mathbb{R}$ the constant multiplication operator induced by A, that is, for any $u = (u_1, u_2, \ldots, u_n)^T \in \mathbb{R}^n$:

$$\mathcal{L}u = w = (w_1, w_2, \ldots, w_n)^T,$$

(3.2)

with $w_l = \sum_{k=1}^n a_{lk} u_k$, $l = 1, 2, \ldots, n$. Clearly $\sigma(\mathcal{L}) = \sigma(A)$, a real point spectrum which may be empty if n is even. Similarly $\sigma_{\mathbb{C}}(\mathcal{L}) = \sigma_{\mathbb{C}}(A)$ for the complex spectra. If the matrix A is strictly positive, it is not hard to prove that

$$\langle \mathcal{L}u, u \rangle \geq \alpha \|u\|^2 \quad \forall u \in \mathbb{R}^n,$$

(3.3)

where $\alpha = \min \{(Ax, x)_{\mathbb{R}_n} ; |x|_{\mathbb{R}_n} = 1\}$ is positive. Hence the operator \mathcal{L} is of class (S^+).

In order to tackle more specific situations we assume that $\dim \ker \mathcal{L}_k = \infty$ for $k = 1, 2, \ldots, p$ and $\dim \ker \mathcal{L}_k < \infty$ for $k = p + 1, \ldots, n$, where $0 \leq p \leq n$. If $p = n$ we assume that $A > 0$ and if $p = 0$, no positivity is needed.

For the general case, we formulate the condition:

(PC) The matrix $(a_{lk})_{l,k=1}^p$ is strictly positive.

We have the following useful result adopted from [3].

Lemma 3.1. Assume that $1 \leq p \leq n$ and the positivity condition (PC) holds. Then there exists a bounded linear operator $S_A : \mathbb{R}^n \to \mathbb{R}^n$ of class (S^+) such that $S_A \mathcal{L} = \mathcal{L}$, that is, \mathcal{L} is an admissible linear perturbation.

It is important to realize the meaning of S_A; it is only needed to guarantee the existence of the topological degree. All concrete calculations will be done with \mathcal{L}, not with S_A. We shall impose a further “common eigenbasis”-assumption:

(CE) The operators \mathcal{L}_k, $k = 1, 2, \ldots, n$, have a common complex eigenbasis $\{\psi_j\}_{j \in \Lambda}$. Here we can assume that the index set $\Lambda \subset \mathbb{Z}$. We denote the corresponding complex eigenvalues by $\{\mu_j(k)\}_{j \in \Lambda}$. Hence $\mathcal{L}_k \psi_j = \mu_j(k) \psi_j$ for all $j \in \Lambda$, $k = 1, 2, \ldots, n$. Although assumption (CE) is very restrictive from the general point of view it can be verified in many applications. It trivially holds in case $\mathcal{L}_1 = \mathcal{L}_2 = \cdots = \mathcal{L}_n$. For any $u = (u_1, u_2, \ldots, u_n)^T \in \mathbb{R}^n$ we denote $\bar{u}_j = \sum_{k=1}^n (u_k, \psi_j)_{\mathbb{C}} e_k$, where $\{e_k\}$ is the standard basis of \mathbb{R}^n. Hence we can write

$$u = \sum_{j \in \Lambda} \bar{u}_j \psi_j, \quad |u|^2 = \sum_{j \in \Lambda} |\bar{u}_j|^2_{\mathbb{C}}.$$

(3.4)

It is easy to see that for any $u \in D(\mathcal{F})$ we have a quasidiagonal representation

$$\mathcal{F} - \alpha(\mathcal{F})u = \sum_{j \in \Lambda} ([M_j - A] \bar{u}_j) \psi_j,$$

(3.5)

where $M_j = \text{diag}(\mu_j^{(1)}, \mu_j^{(2)}, \ldots, \mu_j^{(n)})$. By (3.5) we get the following result (cf. [8]).
Lemma 3.2. Assume (CE). The operator $\mathcal{L} - \lambda$ is injective if and only if
\[\det (M_j - A) \neq 0 \text{ for all } j \in \Lambda. \]
Moreover, an injective operator $\mathcal{L} - \lambda$ is onto if and only if
\[\sup_j \| (M_j - A)^{-1} \| < \infty. \]
Note that in case $L_k = L$ for all $k = 1, 2, \ldots, n$, the injectivity condition in
Lemma 3.2 can be written as $\sigma_c(L) \cap \sigma_c(A) = \emptyset$. By condition (PC) we get the
following result (cf. [8]).

Lemma 3.3. Assume (PC), that is, the matrix $(m_{kl})_{n \times n}$ is strictly positive. If the
operator $\mathcal{L} - \lambda$ is injective, then it is bijective.

We get a simple formula for the norm of $(\mathcal{L} - \lambda)^{-1}$.

Lemma 3.4. Assume that (CE) and (PC) hold. Then
\[\det (M_j - A) \neq 0 \text{ for all } j \in \mathbb{Z}, \]
if and only if the operator $\mathcal{L} - \lambda$ is bijective. Moreover, $(\mathcal{L} - \lambda)^{-1}$ is
bounded and
\[\| (\mathcal{L} - \lambda)^{-1} \| = \sup_j \| (M_j - A)^{-1} \| < \infty. \] (3.6)

In general, the operator $\mathcal{L} - \lambda$ can be injective without being surjective (cf. [3]). However, in the special case $L_1 = L_2 = \ldots = L_n$, injectivity implies bi-
jectivity without any positivity condition (see [7]). We recall now the concept
of the matrix spectrum introduced in [8]. Given a linear operator \mathcal{B} with do-
main and range in $\mathcal{X} = H^n$, we define the matrix resolvent of the operator \mathcal{B} as
the set
\[\rho_M(\mathcal{B}) = \{ A \in \mathbb{R}^{n \times n} | \text{Im} (\mathcal{B} - \lambda I) = \mathcal{X}, \mathcal{B} - \lambda I \text{ has a bounded inverse} \}. \] (3.7)
The matrix spectrum of the operator \mathcal{B} is then the set
\[\sigma_M(\mathcal{B}) = \{ A \in \mathbb{R}^{n \times n} | A \not\in \rho_M(\mathcal{B}) \}. \] (3.8)
It is not hard to prove that the matrix spectrum $\sigma_M(\mathcal{B})$ is a closed set in $\mathbb{R}^{n \times n}$
(see [8]). In the particular case where \mathcal{L} has the properties given at the begin-
ing of the section, that is, \mathcal{L} is an admissible diagonal operator, it is not hard
to prove that $\text{Im} (\mathcal{L} - \lambda)$ is closed whenever the positivity condition (PC) holds.
Then also the degree theory is available and any invertible operator $\mathcal{L} - \lambda$ is a refer-
ce map. Recall that a linear operator \mathcal{B} is completely reduced by a closed
linear subspace $V \subset \mathcal{X}$ if
\[P_V (D(\mathcal{B})) \subset D(\mathcal{B}), \quad \mathcal{B} P_V u = P_V \mathcal{B} u \quad \forall u \in D(\mathcal{B}). \] (3.9)
where P_V is the orthogonal projection from \mathcal{X} onto V. The use of degree theory
in an invariant subspace is justified by the following result.
Lemma 3.5. Assume that \(L \) and \(N \) are admissible in \(H \), \(L \) is completely reduced by a closed linear subspace \(V \subset H \) and \(N(V) \subset V \). Then \(L|_V \) and \(N|_V \) are admissible in \(V \).

Proof. Denote \(\tilde{L} = L|_V \) and \(\tilde{N} = N|_V \). It is easy to verify that \(\tilde{L} : D(L) \cap V \to V \) is admissible in \(V \) and \(\tilde{P} = P_V = P_V P \) is the orthogonal projection onto \(\text{Ker} \tilde{L} \). Since \(N \) is admissible, there exists a bounded demicontinuous map \(\tilde{S} : H \to H \text{ of class } (S) \) with \(P_S = P_N \). Denote \(\tilde{S} : V \to V \) is a bounded demicontinuous map of class \((\tilde{S}) \). Moreover, \(P\tilde{S}(u) = P_V P\tilde{S}(u) = P_V P\tilde{N}(u) = \tilde{N}(u) \) for all \(u \in V \). Hence \(\tilde{N} \) is admissible in \(V \). \(\square \)

In the sequel we will need a generalization of the well-known result \(\sigma(\tilde{T}) = \sigma(\tilde{T}|_V) \cup \sigma(\tilde{T}|_V^\perp) \). The concept of the matrix spectrum is defined in the space \(H^n \) and hence it is too narrow to deal with invariant subspaces. Therefore we define more general “spectrum-like” sets. Indeed, let \(H \) be any real separable Hilbert space and \(T \) a linear operator with domain and range in \(H \).

\[
\rho_{BL}(T) = \{ A \in L(H) \mid \text{Im}(T - A) = H, T - A \text{ has a bounded inverse} \},
\]

\[
\sigma_{BL}(T) = \{ A \in L(H) \mid A/\in \rho_{BL}(T) \}.
\]

(3.10)

Here “BL” stands for “bounded linear” and \(L(H) \) is the space of bounded linear operators in \(H \). The set \(\sigma_{BL}(T) \) is closed in \(L(H) \). We have in analogy with Lemma 3.3 the following result.

Lemma 3.6. Assume that \(L : D(L) \subset H \to H \) is admissible and \(S \in L(H) \) is some admissible linear perturbation. Then \(S \in \sigma_{BL}(L) \) if and only if \(L - S \) is not injective.

Clearly, \(A \in \sigma_{M}(\tilde{T}) \) if and only if \(\tilde{A} \in \rho_{M}(\tilde{T}) \). Moreover, if \(\tilde{T} \) is completely reduced by a closed subspace \(V \subset H \), then the sets \(\sigma_{M}(\tilde{T}|_V) \) and \(\rho_{M}(\tilde{T}|_V^\perp) \) are well defined. We obtain the following result.

Lemma 3.7. Assume that \(\tilde{T} \) and \(\tilde{A} \) are admissible and \(\tilde{A} \) is a constant multiplication operator induced by the matrix \(A \in \mathbb{R}^{n \times n} \). Assume that both \(\tilde{T} \) and \(\tilde{A} \) are completely reduced by a closed subspace \(V \subset H \). Then

\[
A \in \sigma_{M}(\tilde{T}) \iff \exists \tilde{A} \in \rho_{M}(\tilde{T}|_V) \lor \exists \tilde{A} \in \sigma_{M}(\tilde{T}|_V^\perp). \tag{3.11}
\]

The straightforward proof of Lemma 3.7 is omitted here. If the maps \(\tilde{T} \) and \(\tilde{A} \) are admissible, then it is easy to prove that the “geometric multiplicity” of any “eigenmatrix” \(A \in \sigma_{M}(\tilde{T}) \) is finite, that is, \(\dim \ker(M_j - A) < \infty \). Assuming (CE), that is, the existence of a common complex eigensolution, we can write

\[
\sigma_{M}(\tilde{T}) = (\cup_j \sigma_j) \cup \sigma_{\infty}, \text{ where } \sigma_j = \{ A \in \mathbb{R}^{n \times n} \mid \det \left(M_j - A \right) = 0 \}, j \in \Lambda.
\]

\(\lambda \in \Lambda, \)
On the solvability of a system of wave and beam equations

\[\sigma_\infty = \{ A \in \mathbb{R}^{n \times n} \mid A \notin \cup_{j \in \Lambda} \sigma_j, \quad \sup_{j} \| (M_j - A)^{-1} \| = \infty \} \]

Now \(\cup_{j \in \Lambda} \sigma_j \) corresponds to the usual point spectrum and \(\sigma_\infty \) to the continuous spectrum. As noted above, Lemma 3.3 implies \(A \notin \sigma_\infty \) whenever the positivity condition (PC) holds for \(A \) and \(H_5 \) is admissible. By homotopy argument, we get the following basic existence result. Using the results in [7, 8] together with Lemmas 3.5 and 3.7 we obtain the following result.

Theorem 3.8. Assume that \(H_5 \) is admissible, the condition (PC) holds for \(A \) \(\in \sigma_{M(H_5)} \) and the operators \(H_5 \) and \(H_1 \) are completely reduced by a closed linear subspace \(V \subset H_8 \). Assume that \(H_4 : H_8 \rightarrow H_8 \) is such that \(H_4(V) \subset V \) and \((H_1 + H_4)|_V \) is admissible in \(V \). If \(H_1|_V / \in \sigma_{BL}(H_5|_V) \) and

\[\limsup_{u \in V, \| u \| \rightarrow \infty} \frac{\| H_4(u) \|}{\| u \|} < 1 \]

(3.12)

then the equation

\[H_5 u - H_1 u - H_4(u) = h, \quad u \in D(H_5) \cap V \]

(3.13)

admits at least one solution for any \(h \in V \).

4. Wave-beam system

We consider first a linear system of wave and beam equations with linear coupling and damping having the form

\[
\begin{align*}
\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} - a_{11} u - a_{12} v &= h_1(t, x) \quad \text{in } \Omega_1, \\
\frac{\partial^4 v}{\partial t^4} + \frac{\beta^2}{4} \frac{\partial^2 v}{\partial t^2} - a_{21} u - a_{22} v &= h_2(t, x) \quad \text{in } \Omega_1, \\
\end{align*}
\]

(4.1)

where \(h = (h_1, h_2) \) is a given function in \(L^2(\Omega; \mathbb{R}^2) \) with \(\Omega = [0, 2\pi] \times [0, \pi] \) and \(\beta > 0 \). Here, the coupling matrix is

\[A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \]

(4.2)

Denoting \(H = L_2(\Omega) \) and \(\phi_{jk}(t, x) = (1/\pi) \sin(jx) \exp(ikt), \quad (t, x) \in \Omega, \quad j, k \in \mathbb{Z} \), the set \(\{ \phi_{jk} \} \) forms an orthonormal basis in \(H \). The wave operator \(\partial^2 / \partial t^2 \) with periodic Dirichlet boundary conditions has in \(L_2(\Omega) \) the abstract realization

\[L_1 u = \sum_{j,k} \lambda_{jk} \phi_{jk} \phi_{jk} \]

(4.3)
with \(\lambda_{jk}^{(2)} = j^2 - k^2 \), \(j \in \mathbb{Z} \), \(k \in \mathbb{Z} \) and
\[
D(L_2) = \left\{ u \in L^2(\Omega) \mid \sum_{j,k} |j^2 - k^2|^2 |u, \phi_{jk}\|^2 < \infty \right\}.
\] (4.4)

Clearly \(L_2 \) is selfadjoint, \(\text{Ker} L_2 \) is infinite-dimensional and \(L_2 \) has a pure point spectrum \(\sigma(L_2) = \{ \lambda_{jk}^{(2)} \mid j, k \in \mathbb{Z} \} \). Note that the spectrum is unbounded from below and from above. The beam operator (with damping) \(h_0 + a_{11}u + \beta h \) has an analogous realization
\[
L_2^\varepsilon = \sum_{j,k} (\lambda_{jk}^{(2)} + i\beta j)\langle \varphi_{jk}, \varphi_{jk}\rangle \varphi_{jk}, \quad \varepsilon \in D(L_2).
\] (4.5)

where \(\lambda_{jk}^{(2)} = j^2 - k^2 \), \(j \in \mathbb{Z} \), \(k \in \mathbb{Z} \). If \(\beta > 0 \), then the operator \(L_2 \) is normal, \(\text{Ker} L_2 = \{ 0 \} \) and \(\sigma(L_2) = \{ j^2 - k^2 + i\beta k \mid j, k \in \mathbb{Z} \} \). In case \(\beta = 0 \) the operator \(L_2 \) is selfadjoint with infinite-dimensional kernel. We will always assume that \(\beta > 0 \). The diagonal operator \(\mathcal{X} = \text{diag}(L_1, L_2) \) is defined on \(D(\mathcal{X}) = \text{diag}(L_1 \times L_2) \subset \mathcal{H} = \mathbb{H}^2 \). Then \(\mathcal{X} \) is normal with compact (partial) inverse from \(\text{Im} \mathcal{X} \) into \(\text{Im} \mathcal{X} \). A vector \(w = (u, v)^T \in (L^2(\Omega))^2 \) is a weak solution of the wave-beam system (4.1) if and only if it is a solution of the operator equation
\[
\mathcal{X} \varepsilon - \partial \varepsilon = h, \quad w = (u, v)^T \in D(\mathcal{X}) \subset \mathcal{H} = \mathbb{H}^2,
\] (4.6)

where \(h = (h_1, h_2)^T \in \mathcal{H} \). Denote \(M_{jk} = \text{diag}(\lambda_{jk}^{(1)}, \lambda_{jk}^{(2)} + i\beta j) \). The operator \(\mathcal{X} - \partial \varepsilon \) is injective if and only if
\[
\det \begin{pmatrix}
\lambda_{jk}^{(1)} - a_{11} & -a_{12} \\
-a_{12} & \lambda_{jk}^{(2)} + i\beta j - a_{11}
\end{pmatrix} \neq 0
\] (4.7)

for all \(j \in \mathbb{Z} \), \(k \in \mathbb{Z} \). Moreover, assuming the positivity condition (PC), which in this case means that \(a_{11} > 0 \), the operator \(\partial \varepsilon \) is admissible and by Lemma 3.3 the injectivity of \(\mathcal{X} - \partial \varepsilon \) implies its surjectivity and hence \(\mathcal{X} \) is a reference map. We now study more closely the case \(A \in \sigma_\varepsilon(\mathcal{X}) \). If \(a_{11} > 0 \), then \(\dim \text{Ker} (\mathcal{X} - \partial \varepsilon) < \infty \). In fact, for a wave-beam system (with \(\beta > 0 \)) it is easy to see that \(\dim \text{Ker} (\mathcal{X} - \partial \varepsilon) = \infty \) if and only if \(a_{21} = 0 \) and \(a_{11}a_{22} = 0 \). Note that the condition \(\det (M_{jk} - \lambda_{jk}^{(1)} A) = 0 \) is equivalent to \(j^2 - a_{11}j^2 + a_{12}j^2 + \det A = 0 \). Moreover, \(\det (M_{jk} - \lambda_{jk}^{(1)}) = 0 \), \(k \neq 0 \), only in the special case, where \(a_{11} = \lambda_{jk}^{(1)} \) and \(a_{11}a_{22} = 0 \).

5. Existence results

Consider now the linearly coupled system (4.1) of wave and beam equations with some nonlinear perturbation. Indeed, let the given function \(g(t, x, s) = (g_1(t, x, s), g_2(t, x, s)) \) from \(\Omega \times \mathbb{R}^2 \) to \(\mathbb{R}^2 \) be 2\(\pi \)-periodic in \(t \), measurable in...
hence it is relevant to consider the reduced equation
\[(j,k) \in \mathbb{Z} \times \mathbb{Z} \mid \det(M_{jk} - A) = 0 \]
and the operators \(h\) for any \(g = g(t,s)\), that is, \(g(t,s)\) is independent of \(x\) and \(g(t,s)\) is odd in \(s\). For any \(\tau \geq 2\), \(r \in \mathbb{Z}_+\), we define the space
\[V_r = \left\{ u \in X : \left(t, x + \frac{2\pi}{r} \right) = u(t,x) \text{ for a.a. } t \in [0,2\pi], x \in \mathbb{R}, \right\} \]
\[u(t,x) = -u\left(\frac{2\pi}{r} t - x \right) \text{ for a.a. } t \in [0,2\pi], x \in \mathbb{R}. \]
\[= \{ \psi_{jk} : j \in \mathbb{Z}_+, k \in \mathbb{Z}, l = 1,2 \} \]
\[\therefore V_r \cap N(V_r) = \emptyset. \]

Now the operators \(\mathcal{F}\) and \(\mathcal{D}\) are completely reduced by \(V_r\). Moreover, we can take \(r\) such that \((j,k) \mid j/r \in \mathbb{Z}_+\), \(k \in \mathbb{Z}\) \(\cap \Lambda_0 = \emptyset\) (for instance \(r > \max\{j \mid (j,k) \in \Lambda_0\}\)). Then \(\mathcal{D}_{V_r} \cap \sigma_{\mathcal{F}}(\mathcal{D}_{V_r})\). It is easy to see that \(N(V_r) \subset V_r\) and hence it is relevant to consider the reduced equation
\[D_{V_r} u = \mathcal{D}_{V_r} u - N_{V_r}(u) = 0, \quad u \in D(L) \cap V_r, \]
\[\forall h \in V_r. \]
Any solution of (5.4) is also a weak solution for the original equation. The reduced operator \(D_{V_r} - \mathcal{D}_{V_r}\) is injective and hence we can apply Theorem 3.8. Indeed, we obtain the following result.

Theorem 5.1. Assume that \(\beta > 0\), \(a_{11} > 0\), \(A \in \mathcal{S}(\mathcal{F})\). Moreover assume that \(g = g(t,s), g(\cdot , s)\) is odd and \(A + \lambda I\) is admissible. If \((j,k) \mid j/r \in \mathbb{Z}_+\), \(k \in \mathbb{Z}\) \(\cap \Lambda_0 = \emptyset\) and there exist constants \(\eta \geq 0\) and \(C \geq 0\) such that
\[\eta < \left| \left(\mathcal{F} - \mathcal{D}_{V_r} \right)^{-1} \right|^{-1}, \quad \left\| X_{V_r}(u) \right\| \leq \eta \left\| u \right\| + C, \quad \forall u \in V_r, \]
\[\therefore \]
then the equation
\[Tu - \text{div} u - N(u) = h, \quad u \in D(L) \cap V_r, \] (5.6)
admits at least one solution for any \(h \in V_r \).

Proof. By the assumptions of the theorem \(\mathcal{N}(V_r) \subset V_r \) and
\[
\limsup_{u \in V_r, \|u\| \to \infty} \frac{|N(u)|}{\|u\|} < \frac{1}{\|\langle \mathcal{A} \rangle \|_r^{-1}}.
\] (5.7)
and hence the conclusion follows from Theorem 3.8. \(\square \)

As a direct consequence of the above theorem we get the following result.

Corollary 5.2. If
\[
e_0 < \left(\|\langle \mathcal{A} \rangle \|_r \right)^{-1},
\] (5.8)
where \(e_0 \geq 0 \) is the constant in the growth condition (5.1), then Theorem 5.1 holds with \(\eta_r = e_0 \).

Note that
\[
\|\langle \mathcal{A} \rangle \|_r = \sup_{j,r \in \mathbb{Z}^+, k \in \mathbb{Z}} \|\langle M_{jk} - A \rangle \|_r\] (5.9)
Unfortunately, it seems difficult to find out whether or not the equation admits a solution for any \(h \in \ker(\mathcal{A} - \mathcal{A}_0) \) or even for any \(h \in W_2^1 \). For a given concrete \(A \in \sigma_M(\mathcal{A}) \) it is easy to find out all the values of \(r \in \mathbb{Z}_+ \), for which \(\mathcal{A}_1[r] \notin \sigma_{\mathcal{M}}(\mathcal{A}_1) \).

(B) Assume now that \(\beta > 0, a_{11} > 0, \mathcal{A} + \mathcal{N} \) is admissible, \(A \in \sigma_M(\mathcal{N}) \) and \(g = g(s, \alpha) \), that is, \(g \) is independent of \(t \). Moreover, assume that \(\det(M_0 - A) \neq 0 \) for all \(j \in \mathbb{Z}_+ \). This means that \(f^\beta - a_{11}j^2 - a_{22}j^2 + \det A_0 \neq 0 \) for all \(j \in \mathbb{Z}_+ \). Since \(A \in \sigma_M(\mathcal{N}) \) we necessarily have \(a_{11} \in \sigma(L_1) \) and \(a_{12}a_{21} = 0 \). In this special case we define for any \(r \in \mathbb{Z}_+ \) the space
\[
E_r = \{ u \in \mathcal{X} \mid u(t, x + 2\pi r, x) = u(t, x) \text{ for a.e. } t \in [0, 2\pi - \frac{2\pi}{r}, x \in]0, \pi]\].
(5.10)
The operators \(\mathcal{A} \) and \(\mathcal{A}_0 \) are completely reduced by \(E_r \). Taking \(r \in \mathbb{Z}_+ \), such that \(\langle j, k \rangle / j \in \mathbb{Z}_+, k \in \mathbb{Z} \cap \Lambda \rangle = \emptyset \) it is clear that \(\mathcal{A}_1[r] \notin \sigma_{\mathcal{M}}(\mathcal{A}_1) \). Since \(g \) is independent of \(t \) we have \(\mathcal{N}(E_r) \subset E_r \). Hence we get the following result.
On the solvability of a system of wave and beam equations

Theorem 5.3. Assume that \(\beta > 0, a_{11} > 0, A \in \sigma_{BF}(\mathcal{E}) \). Moreover, assume that \(g = g(x, s) \) and \(\mathcal{I} + \mathcal{X} \) is admissible. If \(\{j, k\} \in \mathbb{Z}^+ \), \(k/\tau \in \mathbb{Z} \cap \Lambda_0 = \emptyset \), and there exist constants \(\eta_r \geq 0 \) and \(C_r \geq 0 \) such that
\[
\eta_r < \left[\left(\mathcal{I} - \mathcal{A} \right) \mathcal{X}_{j/r} \right]^{-1}, \quad \left[\mathcal{X}_{j/r} \mathcal{X} \right] \leq \eta_r \left[\mathcal{X} \right] + C_r, \quad \forall u \in \mathcal{E}, \quad (5.11)
\]
then the equation
\[
\mathcal{F} u - \mathcal{A} u - \mathcal{N}(u) = h, \quad u \in D(L) \cap \mathcal{E}, \quad (5.12)
\]
admits at least one solution for any \(h \in \mathcal{E} \).

Note that in case \(N(0) \neq 0 \), Theorem 5.3 gives nontrivial solution for the equation \(\mathcal{F} u - \mathcal{A} u - \mathcal{N}(u) = 0, u \in D(L) \). However, since always \(E_r \cap E_\tau \neq \emptyset \) the above result cannot be used to find multiple solutions for equation \(\mathcal{F} u - \mathcal{A} u - \mathcal{N}(u) = 0 \). Of course, an analogous corollary as in case (A) can be formulated.

(C) Assume now that \(\beta > 0, A \in \sigma_{BF}(\mathcal{E}) \) is arbitrary (no positivity condition!) and \(g = g(x) \). We assume only that \(g \) satisfies the Carathéodory conditions and the growth condition (5.1). Define first the subspace
\[
Z_0 = \left\{ u \in \mathcal{X} \mid u(t, \pi - x) = u(t, x) \right\}, \quad \text{for a.a. } t \in [0, \pi], \quad x \in [0, \pi].
\]
(5.13)
The operators \(\mathcal{I} \) and \(\mathcal{A} \) are completely reduced by \(Z_0 \) and \(N(Z_0) \subset Z_0 \). The most remarkable fact is that \(\dim \ker \mathcal{I}|_{Z_0} = 0 \) implying that the inverse of \(\mathcal{I}|_{Z_0} \) is compact. Thus we can employ Leray-Schauder degree in the space \(Z_0 \) and no monotonicity is needed. Moreover, it is easy to see that \(\dim \ker (\mathcal{I} - \mathcal{A})|_{Z_0} = \infty \) for all \(\mathcal{A}|_{Z_0} \in \sigma_{BL}(\mathcal{E}|_{Z_0}) \). There are now three separate cases we are able to deal with.

(i) First if \(\mathcal{A}|_{Z_0} \notin \sigma_{BL}(\mathcal{E}|_{Z_0}) \) then we obtain the following variant: if
\[
c_0 < \left[\left(\mathcal{I} - \mathcal{A} \right) |_{Z_0} \right]^{-1} - 1,
\]
(5.14)
where \(c_0 \geq 0 \) is the constant in the growth condition (5.1), then the equation
\[
\mathcal{F} u - \mathcal{A} u - \mathcal{N}(u) = h, \quad u \in D(L) \cap \mathcal{Z}_0 \quad (5.15)
\]
admits at least one solution for any \(h \in \mathcal{Z}_0 \).

(ii) If \(\mathcal{A}|_{Z_0} \in \sigma_{BL}(\mathcal{E}|_{Z_0}) \) and \(g \) is odd we denote \(\mathcal{X}_r = \mathcal{Z}_0 \cap \mathcal{V}_r \), where \(r \in \mathbb{Z}_+ \) is such that \(\{j, k\} \in \mathbb{Z}^+ \), \(k/\tau \in \mathbb{Z} \cap \Lambda_0 = \emptyset \). In analogy with Theorem 5.1 we get the result: if
\[
c_0 < \left[\left(\mathcal{I} - \mathcal{A} \right) |_{X_r} \right]^{-1} - 1,
\]
(5.16)
then the equation
\[
\mathcal{F} u - \mathcal{A} u - \mathcal{N}(u) = h, \quad u \in D(L) \cap \mathcal{X}_r, \quad (5.17)
\]
admits at least one solution for any \(h \in \mathcal{X}_r \).
Assume that $\alpha_{j,k} \neq 0$ for all $j, k \in \mathbb{Z}$ and odd. Hence $k \neq 0$ for all $(j, k) \in \Lambda_0$, $j + k$ odd. Moreover, necessarily $\alpha_{j,k} = 0$ and $\alpha_{j,k} \neq 0$ for some pair $(j, k) \in \mathbb{Z} \times \mathbb{Z}$ with $j + k$ odd and $k \neq 0$.

Denoting $Y_r = Z_0 \cap E_r$, where $\{(j,k) : j \in \mathbb{Z}_+, k \neq r \in \mathbb{Z}, j + k \div 2 \}$ and $k \neq 0$, we get as in case (B) if

$$c_0 < \left\| \left(\left(\mathcal{L} - \mathcal{A} \right) \right)^{-1} \right\|^{-1},$$

then the equation

$$Ju - \lambda u - X(u) = h, \quad u \in D(L) \cap Y_r,$$

admits at least one solution for any $h \in Y_r$.

References

On the solvability of a system of wave and beam equations

Juha Berkovits: Department of Mathematical Sciences, University of Oulu, P.O. Box 3000, FIN-90014 Oulu, Finland
E-mail address: juha.berkovits@oulu.fi
Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>December 1, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk