Subgroups and products of \mathbb{R}-factorizable P-groups

Constancio Hernández, Michael Tkachenko

Abstract. We show that every subgroup of an \mathbb{R}-factorizable abelian P-group is topologically isomorphic to a closed subgroup of another \mathbb{R}-factorizable abelian P-group. This implies that closed subgroups of \mathbb{R}-factorizable P-groups are not necessarily \mathbb{R}-factorizable. We also prove that if a Hausdorff space Y of countable pseudocharacter is a continuous image of a product $X = \prod_{i \in I} X_i$ of P-spaces and the space X is pseudo-ω_1-compact, then $nw(Y) \leq \aleph_0$. In particular, direct products of \mathbb{R}-factorizable P-groups are \mathbb{R}-factorizable and ω-stable.

Keywords: P-space, P-group, pseudo-ω_1-compact, ω-stable, \mathbb{R}-factorizable, \aleph_0-bounded, pseudocharacter, cellularity, \aleph_0-box topology, σ-product

Classification: Primary 54H11, 22A05, 54G10; Secondary 54A25, 54C10, 54C25

1. Introduction

The main subject of this article are P-groups, that is, topological groups in which all G_δ-sets are open. It is known that P-groups are peculiar in many respects. For example, every P-group G has a local base at the identity of open subgroups and if G is \aleph_0-bounded, it has a local base at the identity of open normal subgroups [15, Lemma 2.1]. Weak compactness type conditions substantially improve the properties of P-groups. The following result proved in [15] demonstrates this phenomenon and will be frequently used in the article.

Theorem 1.1 ([15, Theorem 4.16 and Corollary 4.14]). For a P-group G, the following conditions are equivalent:

(1) G is \mathbb{R}-factorizable;
(2) G is pseudo-ω_1-compact;
(3) G is ω-stable;
(4) G is \aleph_0-bounded and every continuous homomorphic image H of G with $\psi(H) \leq \aleph_1$ is Lindelöf.

In addition, every \mathbb{R}-factorizable P-group G satisfies $c(G) \leq \aleph_1$.

All terms that appear in Theorem 1.1 are explained in the next subsection.

Subgroups of \mathbb{R}-factorizable P-groups need not be \mathbb{R}-factorizable (see [13, Example 2.1] or [15, Example 3.28]). It is an open problem whether every \aleph_0-bounded P-group is topologically isomorphic to a subgroup of an \mathbb{R}-factorizable...
P-group (see Problem 4.1). We show, however, that every subgroup of an ℝ-factorizable abelian P-group can be embedded as a closed subgroup into another ℝ-factorizable abelian P-group (see Theorem 2.5). Hence closed subgroups of ℝ-factorizable P-groups can fail to be ℝ-factorizable. This is the main result of Section 2.

By [15, Theorem 5.5], direct products of ℝ-factorizable P-groups are ℝ-factorizable. In Theorem 3.7, we present a purely topological result about a special representation of continuous maps of products of P-spaces which generalizes Theorem 5.5 of [15]. It implies, in particular, that for any product of P-spaces, the properties of being ω-stable and pseudo-ω₁-compact are equivalent.

1.1 Notation and terminology. All spaces and topological groups are assumed to be Hausdorff unless a different axiom of separation is specified explicitly.

Let \(\{X_i : i \in I\} \) be a family of topological spaces. A subset \(B \) of the product \(X = \prod_{i \in I} X_i \) is called a box in \(X \) if it has the form \(B = \prod_{i \in I} B_i \), where \(B_i \subseteq X_i \) for each \(i \in I \). Given a box \(B \subseteq X \), we define the set \(\text{coord} B = \{ i \in I : B_i \neq X_i \} \).

The \(\aleph_0 \)-box topology of the product \(X \) is the topology generated by all boxes of the form \(U = \prod_{i \in I} U_i \), where \(|\text{coord} U| \leq \aleph_0 \) and each \(U_i \) is open in \(X_i \). Clearly, the Tychonoff topology of the space \(X \) is generated by open boxes \(U \) with \(|\text{coord} U| < \aleph_0 \).

For every nonempty set \(J \subseteq I \), we put \(X_J = \prod_{i \in J} X_i \) and denote by \(\pi_J \) the projection of \(X \) onto \(X_J \). Given a map \(f : X \rightarrow Y \), we say that \(f \) depends only on a set \(J \subseteq I \) if \(f(x) = f(y) \) for all \(x, y \in X \) satisfying \(\pi_J(x) = \pi_J(y) \).

Pick a point \(a \in X \) and, for every \(x \in X \), put

\[\text{supp}(x) = \{ i \in I : x_i \neq a_i \}. \]

Then the subset

\[\sigma(a) = \{ x \in X : \text{supp}(x) \text{ is finite} \} \]

of \(X \) is called the \(\sigma \)-product of the family \(\{X_i : i \in I\} \) with center at \(a \).

Let \(G = \prod_{i \in I} G_i \) be a direct product of groups. For every \(x \in G \), we set \(\text{supp} x = \{ i \in I : x_i \neq e_i \} \), where \(e_i \) is the identity of \(G_i \). Then the \(\sigma \)-product \(\sigma(e) \subseteq G \) is a subgroup of \(G \), where \(e \) is the identity of \(G \).

Suppose that \(Y \) is a space. We say that \(Y \) is a \(P \)-space if every countable intersection of open sets is open in \(Y \). Let \(\tau \) be an infinite cardinal. A subset \(Z \subseteq Y \) is said to be \(G_\tau \)-dense in \(Y \) if \(Z \) intersects every nonempty \(G_\tau \)-set in \(Y \).

A space \(Y \) is called \(\omega \)-stable if every continuous image \(Z \) of \(Y \) which admits a coarser second countable Tychonoff topology satisfies \(\text{nw}(Z) \leq \aleph_0 \). In general, let \(\tau \geq \aleph_0 \). A space \(Y \) is called \(\tau \)-stable if every continuous image \(Z \) of \(Y \) which admits a coarser Tychonoff topology of weight \(\leq \tau \) satisfies \(\text{nw}(Z) \leq \aleph_0 \). If \(Y \)
is τ-stable for $\tau \geq \aleph_0$, then Y is said to be stable. It is known that arbitrary products and σ-products of second countable spaces are ω-stable [1, Corollary 13].

A space Y is said to be *pseudo-ω_1-compact* if every locally finite (equivalently, discrete) family of open sets in Y is countable. Lindelöf spaces as well as spaces of countable cardinality are pseudo-ω_1-compact.

A topological group G is called \aleph_0-bounded if it can be covered by countably many translates of any neighborhood of the identity. We also say that G is \mathbb{R}-factorizable if every continuous real-valued function f on G can be represented in the form $f = h \circ \varphi$, where $\varphi : G \to H$ is a continuous homomorphism onto a second countable topological group H and h is a continuous real-valued function on H. Every \mathbb{R}-factorizable group is \aleph_0-bounded, but not vice versa [13], [14].

The kernel of a homomorphism $p : G \to H$ is $\ker p$. The minimal subgroup of a group G containing a set $A \subseteq G$ is denoted by $\langle A \rangle$.

As usual, $w(Y)$, $nw(Y)$, $\psi(Y)$, $L(Y)$, and $c(Y)$ are the weight, network weight, pseudocharacter, Lindelöf number and cellularity of a space Y, respectively.

The set of all positive integers is denoted by \mathbb{N}, while \mathbb{Z} is the additive group of integers.

2. Subgroups of \mathbb{R}-factorizable P-groups

Here we show that an arbitrary subgroup of an \mathbb{R}-factorizable abelian P-group is topologically isomorphic to a closed subgroup of another \mathbb{R}-factorizable abelian P-group. This result enables us to conclude that closed subgroups of \mathbb{R}-factorizable P-groups are not necessarily \mathbb{R}-factorizable. Since, by Theorem 1.1, \mathbb{R}-factorizability and pseudo-ω_1-compactness coincide for P-groups, this makes \mathbb{R}-factorizable P-groups look like pseudocompact groups: every subgroup of a pseudocompact group is topologically isomorphic to a closed subgroup of another pseudocompact group [4]. This analogy between \mathbb{R}-factorizable P-groups and pseudocompact groups will be extended in Section 3.

We start with several auxiliary facts.

Lemma 2.1. Suppose that G is an \mathbb{R}-factorizable P-group, and let H be a G_{ω_1}-dense subgroup of G. Then H is \mathbb{R}-factorizable.

Proof: By Theorem 1.1, G satisfies $c(G) \leq \aleph_1$. Therefore, the dense subgroup H of G also satisfies $c(H) \leq \aleph_1$. Let $f : H \to \mathbb{R}$ be a continuous function. By Schepin’s theorem in [12], one can find a quotient homomorphism $\pi : H \to K$ onto a topological group K with $\psi(K) \leq \aleph_1$ and a continuous function $g : K \to \mathbb{R}$ such that $f = g \circ \pi$. Observe that $H \subseteq G \subseteq \varrho G = \varrho H$, where ϱG and ϱH denote the Raïkov completions of G and H, respectively. Now, consider the continuous homomorphic extension $\hat{\pi} : \varrho H \to \varrho K$ of π, and take the restriction $\hat{\pi} = \hat{\pi} \upharpoonright G : G \to \varrho K$ of $\hat{\pi}$ to G. Since H is G_{ω_1}-dense in G, the image $K = \hat{\pi}(H)$ is G_{ω_1}-dense in $\hat{\pi}(G)$. We claim that $\hat{\pi}(G) = K$.

Indeed, $\psi(K) \leq \aleph_1$ implies that there exists a family \(\{U_\alpha : \alpha < \omega_1\} \) of open sets in \(\tilde{\pi}(G) \) such that \(\{e\} = K \cap \bigcap_{\alpha \in \omega_1} U_\alpha \), where \(e \) is the identity of \(gK \). If \(P = \bigcap_{\alpha \in \omega_1} U_\alpha \setminus \{e\} \neq \emptyset \), then \(P \) is a nonempty \(G_{\omega_1} \)-set in \(\tilde{\pi}(G) \) that does not intersect \(K \), which is a contradiction. Thus, \(\psi(\tilde{\pi}(G)) \leq \aleph_1 \). Since every fiber of \(\tilde{\pi} \) is a \(G_{\omega_1} \)-set in \(G \), the group \(H \) intersects all fibers of \(\tilde{\pi} \). Hence we have \(\tilde{\pi}(G) = \tilde{\pi}(H) = K \). So, \(\tilde{f} = g \circ \tilde{\pi} \) is a continuous extension of \(f \) to \(G \). This implies that \(H \) is \(C \)-embedded in \(G \) and, hence, \(H \) is \(\mathbb{R} \)-factorizable by [7, Theorem 2.4]. □

Pseudo-\(\omega_1 \)-compactness is not a productive property, not even in the class of \(P \)-spaces (one can modify Novák’s construction in [11] to produce a counterexample). The following lemma shows the difference between \(P \)-spaces and \(P \)-groups.

Lemma 2.2. A finite product of \(\mathbb{R} \)-factorizable \(P \)-groups is pseudo-\(\omega_1 \)-compact (equivalently, \(\mathbb{R} \)-factorizable).

Proof: Let \(G = G_1 \times \cdots \times G_n \), where each \(G_i \) is an \(\mathbb{R} \)-factorizable \(P \)-group. Then \(G \) is also a \(P \)-group. Hence we can assume that \(n = 2 \). Note that the factors \(G_1 \) and \(G_2 \) are \(\aleph_0 \)-bounded, and so is the product group \(G \). So, by Theorem 1.1, it suffices to verify that every continuous homomorphic image \(H \) of \(G \) with \(\psi(H) \leq \aleph_1 \) is Lindelöf. Let \(p : G \to H \) be a corresponding homomorphism. Then one can apply [14, Lemma 3.7] to find, for every \(i = 1, 2 \), a continuous homomorphism \(f_i : G_i \to K_i \) onto a topological group \(K_i \) with \(\psi(K_i) \leq \aleph_1 \) such that \(\ker f_1 \times \ker f_2 \subseteq \ker p \). Refining topologies of the groups \(K_i \), we can assume that the homomorphisms \(f_1 \) and \(f_2 \) are open. Then \(K_1 \) and \(K_2 \) are \(P \)-groups by [15, Lemma 2.1] and the product homomorphism \(f = f_1 \times f_2 \) of \(G \) onto \(K = K_1 \times K_2 \) is open. From our choice of the homomorphisms \(f_1 \) and \(f_2 \) it follows that there exists a homomorphism \(\varphi : K \to H \) such that \(p = \varphi \circ f \). Since \(f \) is open, the homomorphism \(\varphi \) is continuous. By Theorem 1.1, the \(P \)-groups \(K_1 \) and \(K_2 \) are Lindelöf, and so is the product group \(K \) by Noble’s theorem in [10]. Hence the group \(H = \varphi(K) \) is Lindelöf as well. This finishes the proof. □

The next result has several applications in this section and in Section 3.

Lemma 2.3. The following conditions are equivalent for a product space \(X = \prod_{i \in I} X_i \):

(a) \(X \) is pseudo-\(\omega_1 \)-compact;
(b) the product \(X_J = \prod_{i \in J} X_i \) is pseudo-\(\omega_1 \)-compact for each finite set \(J \subseteq I \);
(c) every \(\sigma \)-product \(\sigma(a) \subseteq X \) is pseudo-\(\omega_1 \)-compact;
(d) every \(\sigma \)-product \(\sigma(a) \subseteq X \) endowed with the relative \(\aleph_0 \)-box topology is pseudo-\(\omega_1 \)-compact.

Proof: It clear that (a) \(\Rightarrow \) (b). Since, for each \(a \in X \), \(\sigma(a) \) is dense in \(X \) when \(X \) carries the usual product topology and the \(\aleph_0 \)-box topology is finer than the
product topology of X, we have that (c) \Rightarrow (a) and (d) \Rightarrow (c) \Rightarrow (b). Therefore, it suffices to show that (b) \Rightarrow (d).

Let $\{U_\alpha : \alpha < \omega_1\}$ be a collection of nonempty open sets in $\sigma(a)$. We shall show that this family cannot be discrete. Without loss of generality, we may assume that $U_\alpha = \sigma \cap V_\alpha$ for each $\alpha < \omega_1$, where V_α has the form $\prod_{i \in I} V_{\alpha,i}$, the sets $V_{\alpha,i}$ are open in X_i and $\text{coord} V_\alpha \leq \aleph_0$. Take a point $x_\alpha \in U_\alpha$. Since $x_\alpha \in \sigma(a)$, the point $a(i) \in X_i$ is an element of $V_{\alpha,i}$ for all $i \in I \setminus J_\alpha$, where $J_\alpha = \text{supp}(x_\alpha)$ is a finite subset of I. Now we apply the Δ-lemma in order to find a subset A of ω_1 of cardinality \aleph_1 and a finite set $J \subseteq I$ such that $J_\alpha \cap J_\beta = J$ whenever $\alpha, \beta \in A$ and $J_\alpha \neq J_\beta$. Since the space $X_J = \prod_{i \in J} X_i$ is pseudo-ω_1-compact, there exists a point $y \in X_J$ such that every neighborhood of y intersects infinitely many elements of the family $\{\prod_{i \in J} V_{\alpha,i} : \alpha \in A\}$. Define a point $x \in \sigma(a)$ by

$$x(i) = \begin{cases} y(i) & \text{if } i \in J; \\ a(i) & \text{if } i \in I \setminus J. \end{cases}$$

It is easy to see that $\pi_J(x) = y$ and every neighborhood of x intersects an infinite number of elements of $\{U_\alpha : \alpha \in A\}$. Hence the space $\sigma(a)$ is pseudo-ω_1-compact.

The equivalence of (a) and (b) in the above lemma should be a known result, but the authors have not found a corresponding reference in the literature.

Corollary 2.4. Let $\Pi = \prod_{i \in I} G_i$ be a direct product of \mathbb{R}-factorizable P-groups. Then $\sigma(e) \subseteq \Pi$, endowed with the relative \aleph_0-box topology, is an \mathbb{R}-factorizable P-group.

Proof: It is clear that $\sigma(e)$ is a P-group. Therefore, $\sigma(e)$ is \mathbb{R}-factorizable by Theorem 1.1, Lemma 2.2 and Lemma 2.3.

We now have all necessary tools to deduce the main result of this section about closed embeddings into \mathbb{R}-factorizable P-groups.

Theorem 2.5. Suppose that G is an \mathbb{R}-factorizable abelian P-group. If H is an arbitrary subgroup of G, then H can be embedded as a closed subgroup into another \mathbb{R}-factorizable abelian P-group.

Proof: Let \mathbb{Z} be the discrete group of integers. Clearly, $G \times \mathbb{Z}$ is an \mathbb{R}-factorizable abelian P-group that contains an isomorphic copy of G. Replacing G by $G \times \mathbb{Z}$, if necessary, we may assume that G contains an element g of infinite order, $g \neq 0_G$.

Let $\lambda = |G| \cdot \aleph_2$ and put $\kappa = \lambda$ if λ is a regular cardinal or $\kappa = \lambda^+$, otherwise. Consider the group

$$\sigma = \{x \in G^\kappa : |\text{supp } x| < \aleph_0\}$$

endowed with the relative \aleph_0-box topology inherited from G^κ. Then σ is an \mathbb{R}-factorizable abelian P-group by Corollary 2.4 and, clearly, $|\sigma| = \kappa$. Let $\sigma \setminus \{0_\sigma\} = \{x \in \sigma : x \neq 0_\sigma\}$. Then $\sigma \setminus \{0_\sigma\}$ is an \mathbb{R}-factorizable abelian P-group such that $\sigma \setminus \{0_\sigma\}$ is a closed subgroup of G. Therefore, H can be embedded as a closed subgroup into another \mathbb{R}-factorizable abelian P-group.

□
\{x_\alpha : \alpha < \kappa\}. To every element \(x_\alpha\), we assign an element \(\tilde{x}_\alpha \in \sigma\) recursively as follows. Choose \(\delta_0 > \max \sup \sup x_0\) and define \(\tilde{x}_0 \in \sigma\) by

\[
\tilde{x}_0(\nu) = \begin{cases}
 x_0(\nu) & \text{if } \nu \neq \delta_0; \\
 g & \text{if } \nu = \delta_0.
\end{cases}
\]

Suppose that we have already defined \(\tilde{x}_\beta\) for each \(\beta < \alpha\), where \(\alpha < \kappa\). Choose \(\delta_\alpha > \sup(\sup x_\alpha \cup \bigcup_{\beta < \alpha} \sup \tilde{x}_\beta)\) and define a point \(\tilde{x}_\alpha \in \sigma\) by

\[
\tilde{x}_\alpha(\nu) = \begin{cases}
 x_\alpha(\nu) & \text{if } \nu \neq \delta_\alpha; \\
 g & \text{if } \nu = \delta_\alpha.
\end{cases}
\]

It is clear that \(\delta_\alpha = \max \sup \tilde{x}_\alpha\). This finishes our construction.

Observe that the sequence \(\{\delta_\alpha : \alpha < \kappa\}\) is strictly increasing (hence it is cofinal in \(\kappa\)) and \(\tilde{x}_\beta(\delta_\alpha) = 0_G\) whenever \(\beta < \alpha < \kappa\). Consider the subgroup \(G_0 = \langle H_0 \cup B \rangle\) of \(\sigma\), where

\[H_0 = \{x \in \sigma : x(0) \in H \text{ and } x(\nu) = 0_G \text{ for each } \nu \neq 0\}\]

and \(B = \{\tilde{x}_\alpha : \alpha < \kappa\}\). We claim that the group \(G_0\) is \(\mathbb{R}\)-factorizable and contains \(H_0 \simeq H\) as a closed subgroup. It is easy to see that \(H_0\) is closed in \(G_0\) because it can be expressed as the intersection of the coordinate 0 axes with \(G_0\). Indeed, suppose that \(x \in G_0\) and \(x(\nu) = 0_G\) for all \(\nu > 0\). By the definition of \(G_0\), \(x\) has the form \(x = h + k_1 \tilde{x}_{\alpha_1} + \cdots + k_n \tilde{x}_{\alpha_n}\), where \(h \in H_0\), \(\alpha_1 < \alpha_2 < \cdots < \alpha_n < \kappa\) and \(k_i \in \mathbb{Z}\) for \(i = 1, \ldots, n\). Then \(\tilde{x}_{\alpha_i}(\delta_{\alpha_i}) = 0_G\) for each \(i < n\) and \(\tilde{x}_{\alpha_n}(\delta_{\alpha_n}) = g\). Hence \(k_n = 0\). If we proceed in the same way for \(i = n - 1, \ldots, 1\), we obtain \(k_n = \cdots = k_1 = 0\), whence \(x = h\), with \(h \in H_0\).

By Lemma 2.1, to prove that \(G_0\) is \(\mathbb{R}\)-factorizable, it suffices to verify that \(G_0\) is \(G_{\omega_1}\)-dense in \(\sigma\). To this end, it is enough to show that if \(x \in \sigma\), \(C \subseteq \kappa\) and \(|C| \leq \aleph_1\), then there exists \(\alpha < \kappa\) such that \(\tilde{x}_\alpha(\nu) = x(\nu)\) for each \(\nu \in C\). Suppose that \(x \in \sigma\) and choose \(\beta < \kappa\) such that \(\delta_\beta \sup C\). Then choose \(\alpha < \kappa\) such that \(\beta \leq \alpha\) and \(x_\alpha(\nu) = x(\nu)\) for each \(\nu < \delta_\beta\). Then \(\tilde{x}_\alpha(\nu) = x(\nu)\) for each \(\nu \in C\). This implies that the group \(G_0\) is \(G_{\omega_1}\)-dense in \(\sigma\) and, therefore, \(\mathbb{R}\)-factorizable.

\[\square\]

Corollary 2.6. Closed subgroups of \(\mathbb{R}\)-factorizable \(P\)-groups need not be \(\mathbb{R}\)-factorizable.

Proof: According to [13, Example 3.1], there exist an \(\mathbb{R}\)-factorizable abelian \(P\)-group \(G\) and a dense subgroup \(H\) of \(G\) such that \(H\) is not \(\mathbb{R}\)-factorizable. By Theorem 2.5, \(H\) is topologically isomorphic to a closed subgroup of another \(\mathbb{R}\)-factorizable \(P\)-group, so that closed subgroups of \(\mathbb{R}\)-factorizable \(P\)-groups are not necessarily \(\mathbb{R}\)-factorizable.

\[\square\]

It is known that all subgroups of compact groups as well as all subgroups of \(\sigma\)-compact groups are \(\mathbb{R}\)-factorizable [13], [14]. In the following definition, we introduce the class of groups with this property.
Definition 2.7. A topological group G is called hereditarily \mathbb{R}-factorizable if all subgroups of G are \mathbb{R}-factorizable.

Theorem 2.8. Every hereditarily \mathbb{R}-factorizable P-group is countable and, therefore, discrete.

Proof: Suppose to the contrary that G is an uncountable hereditarily \mathbb{R}-factorizable P-group and take a subset A of G of cardinality \aleph_1. It is clear that the P-group $H = \langle A \rangle$ has cardinality \aleph_1. Since H is \mathbb{R}-factorizable and $L(H) \leq \aleph_1$, from [15, Corollary 3.34] it follows that H is a Lindelöf group. In its turn, this implies that $w(H) \leq \aleph_1$ (see [15, Corollary 4.11]). If $w(H) = \aleph_1$, then by [7, Theorem 3.1], H has a subgroup which fails to be \mathbb{R}-factorizable, thus contradicting the hereditary \mathbb{R}-factorizability of G. Hence, $w(H) = \aleph_0$. Since H is a P-space, it is discrete and, consequently, $|H| = w(H) = \aleph_0$. This contradiction completes the proof. \(\Box\)

One can reformulate Theorem 2.8 by saying that every uncountable P-group G contains a subgroup of size \aleph_1 which fails to be \mathbb{R}-factorizable. Indeed, if G is \mathbb{R}-factorizable, this immediately follows from the above argument. Otherwise, by Theorem 1.1, G contains a discrete family $\{U_\alpha : \alpha < \omega_1\}$ of nonempty open sets. Choose a subgroup H of G of size \aleph_1 such that $V_\alpha = H \cap U_\alpha \neq \emptyset$ for each $\alpha < \omega_1$. Then the family $\{V_\alpha : \alpha < \omega_1\}$ of nonempty open sets is discrete in H, so that the group H is not \mathbb{R}-factorizable by Theorem 1.1.

3. Continuous images

By [15, Theorem 5.5], an arbitrary direct product G of \mathbb{R}-factorizable P-groups is \mathbb{R}-factorizable. Here we strengthen this result and show that every continuous map $f: G \to X$ to a Hausdorff space X of countable pseudocharacter can be factored via a quotient homomorphism $\pi: G \to K$ onto a second countable topological group K. In fact, this follows from an even stronger result (see Theorem 3.7): if a Hausdorff space Y of countable pseudocharacter is a continuous image of a product X of P-spaces and X is pseudo-ω_1-compact, then $nw(Y) \leq \aleph_0$. In particular, the space X is ω-stable. We precede this result by a series of lemmas. The first of them is an analogue of Noble’s theorem on z-closed projections [9], [10].

Lemma 3.1. The Cartesian product $X \times Y$ of regular P-spaces X and Y is pseudo-ω_1-compact if and only if X and Y are pseudo-ω_1-compact and the projection $p: X \times Y \to X$ transforms clopen subsets of $X \times Y$ to clopen subsets of X.

Proof: Suppose that $X \times Y$ is pseudo-ω_1-compact and let $W \subseteq X \times Y$ be a clopen set. If there exists a point $x_0 \in p(W) \setminus p(W)$, take any point $y_0 \in Y$ and a neighborhood $W'_0 = U'_0 \times V_0$ of (x_0, y_0), where U'_0 and V_0 are clopen sets, such that $W'_0 \cap W = \emptyset$. Pick a point $(x_1, y_1) \in W$ with $x_1 \in U'_0$. Now we take neighborhoods $W_1 = U_1 \times V_1$ and $W'_1 = U'_1 \times V_1$ of (x_1, y_1) and (x_0, y_1), respectively, where U_1, \(\Box\)}
Lemma 3.2. This contradiction proves the lemma. □

Proof: Set \(V \subseteq W \) for each \(\beta < \alpha \), such that \(W_\beta = U_\beta \times V_\beta \) is a neighborhood of \((x_\beta, y_\beta)\) satisfying \(W_\beta \subseteq W \) and \(W_\beta = U_\beta \times V_\beta \) is a neighborhood of \((x_0, y_\beta)\) with \(W_\beta \cap W = \emptyset \), and where \(U_\beta \cup U'_\beta \subseteq U_\gamma \) if \(\gamma < \beta < \alpha \). Choose \((x_\alpha, y_\alpha)\) in \(W \) such that \(x_\alpha \in \bigcap_{\beta < \alpha} U'_\beta \). Then we can take neighborhoods \(W_\alpha = U_\alpha \times V_\alpha \) and \(W'_\alpha = U'_\alpha \times V_\alpha \) of \((x_\alpha, y_\alpha)\) and \((x_0, y_\alpha)\), respectively, such that \(W_\alpha \cap W = \emptyset \) and \(W_\alpha \subseteq W \), and where \(U_\alpha \cup U'_\alpha \subseteq \bigcap_{\beta < \alpha} U'_\beta \). This finishes our recursive construction.

Since \(X \times Y \) is pseudo-\(\omega_1 \)-compact, the family \(F = \{ W_\alpha : \alpha < \omega_1 \} \) has an accumulation point \((x, y)\) in \(W \). We claim that \((x, y)\) is an accumulation point of the family \(F' = \{ W'_\alpha : \alpha < \omega_1 \} \). Indeed, let \(\alpha_0 < \omega_1 \) be arbitrary. Since \(U_\alpha \cup U'_\alpha \subseteq U_\beta \) if \(\beta < \alpha < \omega_1 \) and each \(U'_\alpha \) is clopen, we have \(x \in \bigcap_{\alpha < \omega_1} U'_\alpha \). Let \(U \times V \) be a neighborhood of \((x, y)\) in \(X \times Y \). Since \(y \) is an accumulation point of the family \(\{ V_\alpha : \alpha < \omega_1 \} \), there exists \(\alpha > \alpha_0 \) such that \(V \cap V_\alpha \neq \emptyset \). Clearly, \(x \in U \cap U'_\alpha \), so that \((U \times V) \cap (U'_\alpha \times V_\alpha) \neq \emptyset \). Our claim is proved.

Thus, \((x, y)\) \(\in \bigcup F \cap \bigcup F' \neq \emptyset \). However, \(\bigcup F \subseteq W \) and \(\bigcup F' \subseteq (X \times Y) \setminus W = W' \), whence \(\bigcup F \cap \bigcup F' \subseteq W \cap W' = \emptyset \). This contradiction shows that the set \(p(W) \) is clopen in \(X \).

Conversely, suppose that both spaces \(X \) and \(Y \) are pseudo-\(\omega_1 \)-compact and \(p : X \times Y \to X \) transforms clopen subsets of \(X \times Y \) to clopen subsets of \(X \). Suppose to the contrary that \(X \times Y \) contains a discrete family \(\{ O_\alpha : \alpha < \omega_1 \} \) of nonempty clopen sets. For every \(\alpha < \omega_1 \), put \(W_\alpha = \bigcup_{\beta \geq \alpha} O_\beta \). Then we have a decreasing sequence \(W_0 \supseteq W_1 \supseteq \cdots \supseteq W_\alpha \supseteq \cdots, \alpha < \omega_1 \), of nonempty clopen subsets of \(X \times Y \) with empty intersection. Each set \(U_\alpha = p(W_\alpha) \) is clopen in \(X \) and, since \(X \) is pseudo-\(\omega_1 \)-compact, the set \(\bigcap_{\alpha < \omega_1} U_\alpha \) is nonempty. Let \(x_0 \) be an element of \(\bigcap_{\alpha < \omega_1} U_\alpha \). The sets \(V_\alpha = (\{ x_0 \} \times Y) \cap W_\alpha \) are clopen in the pseudo-\(\omega_1 \)-compact space \(\{ x_0 \} \times Y \). Hence \(\bigcap_{\alpha < \omega_1} V_\alpha \subseteq \bigcap_{\alpha < \omega_1} W_\alpha \) is nonempty. This contradiction proves the lemma. □

Lemma 3.2. Suppose that the product \(X \times Y \) of \(P \)-spaces \(X \) and \(Y \) is pseudo-\(\omega_1 \)-compact. If \(W \) is a clopen set in \(X \times Y \), then for every \(x_0 \in p(W) \), there exists a clopen neighborhood \(U \) of \(x_0 \) in \(X \) such that \(U \times V_{x_0} \subseteq W \), where \(V_{x_0} = \{ y \in Y : (x_0, y) \in W \} \).

Proof: Set \(O = (X \times V_{x_0}) \setminus W \). Since \(V_{x_0} \) is clopen in \(Y \), the set \(O \) is clopen in \(X \times Y \). From Lemma 3.1 it follows that \(p(O) \) and \(U = X \setminus p(O) \) are clopen sets in \(X \), where \(p : X \times Y \to X \) is the projection. Note that \(x_0 \in U \) and if \((x, y) \in U \times V_{x_0} \), then \(x \notin p(O) \). So, \((x, y) \in W \) and, hence, \(U \times V_{x_0} \subseteq W \). □

The next result can be obtained by combining [8, Theorem 1.6] and the characterization of the so-called *approximation property* for products of two spaces given in [2]. We prefer, however, to supply the reader with a direct proof.
Lemma 3.3. Suppose that the product \(X = \prod_{i=1}^{k} X_i \) of \(P \)-spaces is pseudo-\(\omega_1 \)-compact. If \(W \) is a clopen set in \(X \), then \(W = \bigcup_{n \in \omega} \prod_{i=1}^{k} U_{n,i} \), where the sets \(U_{n,i} \) are clopen in \(X_i \) for all \(n \in \omega \) and \(i \leq k \).

Proof: By Lemma 3.1, it suffices to consider the case \(n = 2 \). Let \(W \) be a clopen subset of \(X_1 \times X_2 \). Then \(W' = X \setminus W \) is clopen as well. For every \(x \in X_1 \), put

\[
V_x = \{ y \in X_2 : (x,y) \in W \} \quad \text{and} \quad V'_x = \{ y \in X_2 : (x,y) \in W' \}.
\]

Then both sets \(V_x \) and \(V'_x \) are clopen in \(X_2 \) and \(V'_x = X_2 \setminus V_x \). Consider the equivalence relation \(\sim \) on \(X_1 \) defined by \(x \sim y \) if and only if \(V_x = V_y \). We claim that for every \(x \in X_1 \), the equivalence class \([x]\) of \(x \) is open in \(X_1 \). Indeed, if \(y \in [x] \), then \(V_y = V_x = V \). Apply Lemma 3.2 to choose a clopen neighborhood \(U \) of \(y \) in \(X_1 \) such that \(U \times V \subseteq W \) and \(U \times V' \subseteq W' \), where \(V' = X_2 \setminus V \). Then \(V_z = V \) for each \(z \in U \), so that \(y \in U \subseteq [x] \). This proves that the set \([x]\) is open.

Since the space \(X_1 \) is pseudo-\(\omega_1 \)-compact and the equivalence classes \([x]\) with \(x \in X_1 \) form a disjoint open cover of \(X_1 \), there exists a countable set \(\{ x_n : n \in \omega \} \subseteq X_1 \) such that \(X_1 = \bigcup_{n \in \omega} [x_n] \). It is clear that every set \(U_{n,1} = [x_n] \) is clopen in \(X_1 \). Therefore, \(W = \bigcup_{n \in \omega} U_{n,1} \times X_2 \) is the required representation of \(W \), where \(U_{n,2} = V_{x_n} \) for each \(n \in \omega \). \(\square \)

It is well known (see [6]) that if a product space \(X = \prod_{i \in I} X_i \) has countable cellularity, then every regular closed set in \(X \) depends on at most countably many coordinates. In a sense, our next result is an analogue of this fact in the case when the product space \(X \) is pseudo-\(\omega_1 \)-compact and the factors \(X_i \) are \(P \)-spaces.

Lemma 3.4. Suppose that a product \(X = \prod_{i \in I} X_i \) of \(P \)-spaces is pseudo-\(\omega_1 \)-compact. Let \(\sigma(a) \subseteq X \) be a \(\sigma \)-product endowed with the relative \(\aleph_0 \)-box topology (finer than the usual subspace topology). Then every clopen subset of \(\sigma(a) \) depends on at most countably many coordinates.

Proof: It is clear that the space \(\sigma(a) \) with the \(\aleph_0 \)-box topology is a \(P \)-space. Let \(U \) be a clopen subset of \(\sigma(a) \). Then \(V = \sigma(a) \setminus U \) is also clopen in \(\sigma(a) \). Suppose that \(\pi_j(U) \cap \pi_j(V) \neq \emptyset \) for every countable set \(J \subseteq I \). Let us call a set \(A \subseteq \sigma(a) \) canonical if \(A \) has the form \(\sigma(a) \cap P \), where \(P \) is an \(\aleph_0 \)-box in \(X \). First, we prove the following auxiliary fact.

Claim. Let \(A \subseteq U \) and \(B \subseteq V \) be canonical open sets in \(\sigma(a) \) such that \(U' = U \setminus A \neq \emptyset \) and \(V' = V \setminus B \neq \emptyset \). Then \(\pi_j(U') \cap \pi_j(V') \neq \emptyset \) for each countable set \(J \subseteq I \).

Indeed, there exists a nonempty countable set \(C \subseteq I \) such that \(A = \sigma(a) \cap \pi_C^{-1} \pi_C(A) \) and \(B = \sigma(a) \cap \pi_C^{-1} \pi_C(B) \). Let \(J \) be a countable subset of \(I \). We can assume that \(C \subseteq J \). Since \(A \cap V = \emptyset = B \cap U \), we infer that

\[
\pi_j(A) \cap \pi_j(V) = \emptyset \quad \text{and} \quad \pi_j(B) \cap \pi_j(U) = \emptyset.
\]
Note that the set $U' \cup A$ is dense in U and $V' \cup B$ is dense in V. Since the restriction of π_J to $\sigma(a)$ is an open map, from $\pi_J(U) \cap \pi_J(V) \neq \emptyset$ it follows that

$$
\pi_J(U' \cup A) \cap \pi_J(V' \cup B) \neq \emptyset.
$$

Note that $U' \subseteq U$ and $V' \subseteq V$, so (1) implies that $\pi_J(U') \cap \pi_J(B) = \emptyset$, $\pi_J(V') \cap \pi_J(A) = \emptyset$ and $\pi_J(A) \cap \pi_J(B) = \emptyset$. Therefore, from (2) it follows that $\pi_J(U') \cap \pi_J(V') \neq \emptyset$. This proves our claim.

We will construct by recursion three sequences $\{I_\alpha : \alpha < \omega_1\}$, $\{U_\alpha : \alpha < \omega_1\}$ and $\{V_\alpha : \alpha < \omega_1\}$ satisfying the following conditions for all $\beta, \gamma < \omega_1$:

(i) $I_\beta \subseteq I$, $|I_\beta| \leq \aleph_0$;
(ii) $I_\gamma \subseteq I_\beta$ if $\gamma < \beta$;
(iii) U_β and V_β are nonempty canonical clopen sets in $\sigma(a)$;
(iv) $U_\beta \subseteq U$, $V_\beta \subseteq V$ and $\pi_I(\beta) = \pi_I(\beta)$;
(v) $U_\gamma = \sigma(a) \cap \pi_I^{-1}(U_\gamma)$ and $V_\gamma = \sigma(a) \cap \pi_I^{-1}(V_\gamma)$ if $\gamma < \beta$;
(vi) $U_\gamma \cap U_\beta = \emptyset$ and $V_\gamma \cap V_\beta = \emptyset$ if $\gamma < \beta$.

To start, take a nonempty countable set $I_0 \subseteq I$ and choose canonical clopen sets U_0 and V_0 in $\sigma(a)$ such that $U_0 \subseteq U$, $V_0 \subseteq V$ and $\pi_I(0) \cap \pi_I(0) \neq \emptyset$. Taking smaller clopen sets, one can assume that $\pi_I(0) = \pi_I(0)$. Suppose that at some stage $\alpha < \omega_1$, we have defined sequences $\{I_\beta : \beta < \alpha\}$, $\{U_\beta : \beta < \alpha\}$ and $\{V_\beta : \beta < \alpha\}$ satisfying conditions (i)–(vi). Since each I_β is countable and the sets U_β, V_β depend on countably many coordinates, there exists a countable set $I_\alpha \subseteq I$ such that $I_\beta \subseteq I_\alpha$, $U_\beta = \sigma(a) \cap \pi_I^{-1}(U_\beta)$ and $V_\beta = \sigma(a) \cap \pi_I^{-1}(V_\beta)$ for each $\beta < \alpha$. Let $U'_\alpha = U\setminus U_\alpha$ and $V'_\alpha = V\setminus V_\alpha$, where $G_\alpha = \bigcup_{\beta < \alpha} U_\beta$ and $H_\alpha = \bigcup_{\beta < \alpha} V_\beta$. Apply the above Claim to choose nonempty canonical clopen sets $U_\alpha \subseteq U'_\alpha$ and $V_\alpha \subseteq V'_\alpha$ such that $\pi_I(0) = \pi_I(0)$. An easy verification shows that the sequences $\{I_\beta : \beta \leq \alpha\}$, $\{U_\beta : \beta \leq \alpha\}$ and $\{V_\beta : \beta \leq \alpha\}$ satisfy conditions (i)–(vi) for all $\beta, \gamma \leq \alpha$, thus finishing our recursive construction.

Let $K = \bigcup_{\alpha < \omega_1} I_\alpha$. By (iv), the set $G = \bigcup_{\alpha < \omega_1} U_\alpha$ is contained in U and $H = \bigcup_{\alpha < \omega_1} V_\alpha$ is contained in V, so that $G \cap H = \emptyset$. To obtain a contradiction, it suffices to show that the sets G and H have a common cluster point in $\sigma(a)$. From (v), (ii) and our definition of the sets G and H it follows that $G = \sigma(a) \cap \pi_K^{-1}(\pi_K(G))$ and $H = \sigma(a) \cap \pi_K^{-1}(\pi_K(H))$, so we can assume without loss of generality that $K = I$.

By Lemma 2.3, the P-space $\sigma(a)$ is pseudo-ω_1-compact. Hence the family $\gamma = \{U_\alpha : \alpha < \omega_1\}$ has an accumulation point $x \in \sigma(a)$ and every neighborhood of x in $\sigma(a)$ intersects uncountably many elements of γ. Let O be a canonical open neighborhood of x in X and let $C = \text{coord} O$. Since $|C| \leq \aleph_0$, (ii) implies that there exists $\beta < \omega_1$ such that $C \subseteq I_\beta$. There are uncountably many ordinals $\alpha < \omega_1$ such that $\beta \leq \alpha$ and $O \cap U_\alpha \neq \emptyset$. For every such an $\alpha < \omega_1$, let z_α
be an arbitrary point of the set \(\pi_{I_\alpha}(O \cap U_\alpha) \subseteq \pi_{I_\alpha}(O) \cap \pi_{I_\alpha}(U_\alpha) \). From (iv) it follows that \(\pi_{I_\alpha}(U_\alpha) = \pi_{I_\alpha}(V_\alpha) \), so \(z_\alpha \in \pi_{I_\alpha}(O) \cap \pi_{I_\alpha}(V_\alpha) \). Choose a point \(z \in V_\alpha \) such that \(\pi_{I_\alpha}(z) = z_\alpha \). Since \(\text{coord} \mathcal{O} = C \subseteq I_\beta \subseteq I_\alpha \), we conclude that \(z \in O \cap V_\alpha \neq \emptyset \). This immediately implies that \(x \) is an accumulation point of the family \(\{V_\alpha : \alpha < \omega_1\} \) and, hence, \(x \in \overline{H} \). Thus, \(x \in \overline{G \cap H} \neq \emptyset \), which is a contradiction.

We have thus proved that \(\pi_J(U) \cap \pi_J(V) = \emptyset \) for some nonempty countable subset \(J \) of \(I \), whence it follows that \(U = \pi(a) \cap \pi_J^{-1}(U) \). In other words, \(U \) depends only on the set \(J \).

A simple modification of the argument in the proof of Lemma 3.4 (combined with the \(\Delta \)-lemma) implies the following corollary.

Corollary 3.5. Let \(\{X_i : i \in I\} \) be a family of \(P \)-spaces such that the product \(X = \prod_{i \in I} X_i \) is pseudo-\(\omega_1 \)-compact. If \(U \) and \(V \) are open sets in \(X \) and \(U \cap V = \emptyset \), then there exists a nonempty countable set \(J \subseteq I \) such that \(\pi_J(U) \cap \pi_J(V) = \emptyset \).

It is not clear whether one can find a countable set \(J \subseteq I \) in Corollary 3.5 satisfying \(\overline{\pi_J(U) \cap \pi_J(V)} = \emptyset \).

Lemma 3.6. Let \(X = \prod_{i \in I} \) be a product space and \(\sigma(a) \subseteq X \) be the \(\sigma \)-product with center at \(a \in X \). Suppose that \(\emptyset \neq J \subseteq I \) and that a continuous map \(f : X \rightarrow Y \) to a Hausdorff space \(Y \) satisfies \(f(x) = f(y) \) whenever \(x, y \in \sigma(a) \) and \(\pi_J(x) = \pi_J(y) \). Then \(f \) depends only on \(J \).

Proof: Let \(x, y \in X \) satisfy \(\pi_J(x) = \pi_J(y) \). Suppose to the contrary that \(f(x) \neq f(y) \) and choose in \(X \) disjoint open neighborhoods \(U \) and \(V \) of \(x \) and \(y \), respectively, such that \(f(U) \cap f(V) = \emptyset \). We can assume without loss of generality that the sets \(U \) and \(V \) are canonical and \(\text{coord} U = C = \text{coord} V \). Let us define two points \(x^*, y^* \in X \) by

\[
x^*(i) = \begin{cases} x(i) & \text{if } i \in C; \\
x^*(i) = a(i) & \text{if } i \in I \setminus C
\end{cases}
\]

and, similarly,

\[
y^*(i) = \begin{cases} y(i) & \text{if } i \in C; \\
y^*(i) = a(i) & \text{if } i \in I \setminus C.
\end{cases}
\]

Then \(x^*, y^* \in \sigma(a) \) and \(\pi_J(x^*) = \pi_J(y^*) \), so that \(f(x^*) = f(y^*) \). On the other hand, we have \(x^* \in U \) and \(y^* \in V \), whence \(f(x^*) \in f(U) \) and \(f(y^*) \in f(V) \). Since \(f(U) \cap f(V) = \emptyset \), this implies that \(f(x^*) \neq f(y^*) \), which is a contradiction.

Let \(f : X \rightarrow Y \) and \(g : X \rightarrow Z \) be continuous maps, where \(Y = f(X) \). We say that \(f \) is finer than \(g \) or, in symbols, \(f \prec g \) if there exists a continuous map \(\varphi : Y \rightarrow Z \) such that \(g = \varphi \circ f \). The theorem below is the main result of this section.
Theorem 3.7. Let $X = \prod_{i\in I} X_i$ be a product of P-spaces and $f: X \to Y$ be a continuous map onto a space Y of countable pseudocharacter. If X is pseudo-ω_1-compact, then f depends on at most countably many coordinates. In addition, one can find a countable set $C \subseteq I$ and, for each $i \in C$, a continuous map $h_i: X_i \to \mathbb{N}$ to the discrete space \mathbb{N} such that $(\prod_{i \in C} h_i) \circ \pi_C < f$. Hence $nw(Y) \leq \aleph_0$.

Proof: First, we show that f depends on countably many coordinates. Choose any point $a \in X$ and denote by $\sigma(a)$ the σ-product of the spaces X_i with center at a. Let $\sigma(a)$ carry the relative \aleph_0-box topology (which is finer than the subspace topology of $\sigma(a)$ inherited from X). By Lemma 2.3, the P-space $\sigma(a)$ is pseudo-ω_1-compact. Since $\psi(Y) \leq \aleph_0$, the set $F_y = f^{-1}(y) \cap \sigma(a)$ is clopen in $\sigma(a)$ for each $y \in Y$. Clearly, $\{F_y : y \in f(\sigma(a))\}$ is a partition of $\sigma(a)$ into disjoint clopen sets. Hence, the pseudo-ω_1-compactness of $\sigma(a)$ implies that the image $Z = f(\sigma(a))$ is countable.

Given a nonempty set $J \subseteq I$, we denote by π_J the projection of X onto $X_J = \prod_{i \in J} X_i$. By Lemma 3.4, every set F_y depends only on a countable number of coordinates, that is, there exists a countable set $C(y) \subseteq I$ such that $F_y = \sigma(a) \cap \pi_{C(y)}^{-1}(\sigma(y))(F_y)$. Put $C = \bigcup_{y \in Z} C(y)$. Then C is a countable subset of I and $F_y = \sigma(a) \cap \pi_{C(y)}^{-1}(\sigma(y))(F_y)$ for each $y \in Z$. Therefore, if $x, y \in \sigma(a)$ and $\pi_C(x) = \pi_C(y)$, then $f(x) = f(y)$. Apply Lemma 3.6 to conclude that f depends only on the set C. In other words, there exists a map $f_C: X_C \to Y$ such that $f = f_C \circ \pi_C$. The map f_C is continuous because the projection π_C is open. We can assume, therefore, that $C = I$ (and $f_C = f$). In addition, we can assume that $I = \omega$, i.e., $X = \prod_{n \in \omega} X_n$ and that each factor X_n is infinite.

For every $n \in \omega$, consider the subspace K_n of X defined by

$$K_n = \{x \in X : x(i) = a(i) \text{ for each } i > n\}.$$

Then $K_n \cong \prod_{i \leq n} X_i$, so that K_n is a pseudo-ω_1-compact P-space. As above, it is easy to see that the image $f(K_n)$ is countable for each $n \in \omega$ and the set $F_{n,y} = K_n \cap f^{-1}(y)$ is clopen in K_n for each $y \in f(K_n)$. By Lemma 3.3, every set $F_{n,y}$ can be represented as a countable union of basic open sets of the form $U_0 \times \cdots \times U_n$, where U_i is a clopen subset of X_i for each $i \leq n$ (we identify K_n and $X_0 \times \cdots \times X_n$). Since these representations of the sets $F_{n,y}$ involve only countably many clopen sets in each of the factors X_0, \ldots, X_n, one can find, for every $i \leq n$, a continuous map $g_{n,i}: X_i \to \mathbb{N}$ to the discrete space \mathbb{N} such that the direct product $p_n = \prod_{i \leq n} g_{n,i}$ satisfies $p_n \prec f_n$, where $f_n = f |_{K_n}$. For every $i \in \omega$, let g_i be the diagonal product of the family $\{g_{n,i} : n \geq i\}$. Then the map $g_i: X_i \to \mathbb{N}^{\omega \setminus i}$ is continuous and, clearly, the product map $q_n = \prod_{i \leq n} g_i$ satisfies $q_n \prec p_n \prec f_n$ for each $n \in \omega$. Again, the image $g_i(X_i)$ is countable and the fibers $g_i^{-1}(y)$, with $y \in g_i(X_i)$, form a partition of X_i into clopen sets. Hence, for every $i \in \omega$, there exists a continuous onto map $h_i: X_i \to \mathbb{N}$ satisfying $h_i \prec g_i$. Let
$h = \prod_{i \in \omega} h_i : X \to \mathbb{N}^\omega$ be the direct product of the family $\{h_i : i \in \omega\}$. Note that each map h_i is open and onto, and so is the map h.

Let us verify that $h \prec f$. Indeed, since $h_i \prec g_i$ for each $i \in \omega$, we have $\prod_{i \leq n} h_i \prec \prod_{i \leq n} g_i = q_n \prec f_n$ and, hence,

$$\phi_n = h_{\mid K_n} = \prod_{i \leq n} h_i \prec f_n$$

for all $n \in \omega$. First, we claim that $h^{-1}(x) \subseteq f^{-1}(f(x))$ for every $x \in X$. Suppose to the contrary that there exist points $x, y \in X$ such that $h(x) = h(y)$ but $f(x) \neq f(y)$. Choose in Y disjoint neighborhoods U_x and U_y of $f(x)$ and $f(y)$, respectively. By the continuity of f, there are canonical open sets $V_x \ni x$ and $V_y \ni y$ in the product space X such that $f(V_x) \subseteq U_x$ and $f(V_y) \subseteq U_y$. We can assume without loss of generality that $V_x = V_0^x \times \cdots \times V_n^x \times P_n$ and $V_y = V_0^y \times \cdots \times V_n^y \times P_n$, where $n \in \omega$, the sets V_i^x, V_i^y are open in X_i for $i = 0, \ldots, n$ and $P_n = \prod_{i > n} X_i$. For every $n \in \omega$, denote by r_n the retraction of X onto K_n defined by $r_n(x)(i) = x(i)$ if $i \leq n$ and $r_n(x) = a(i)$ if $i > n$. Then $x' = r_n(x) \in V_x \cap K_n$ and $y' = r_n(y) \in V_y \cap K_n$. Therefore, from $f(x') \in f(V_x) \subseteq U_x$, $f(y') \in f(V_y) \subseteq U_y$ and $U_x \cap U_y = \emptyset$ it follows that $f(x') \neq f(y')$. By (3), however, we have $h \prec \phi_n \circ r_n \prec f_n \circ r_n = f \circ r_n$ and, hence, the equality $h(x) = h(y)$ implies that $f(r_n(x)) = f(r_n(y))$ or, equivalently, $f(x') = f(y')$. This contradiction proves the claim. So, there exists a map $i : \mathbb{N}^\omega \to Y$ satisfying $f = i \circ h$. Since the map h is open, i is continuous. Therefore, $h \prec f$.

Finally, the space \mathbb{N}^ω is second countable, so that the image $Y = f(X) = i(\mathbb{N}^\omega)$ has a countable network. \qed

It is shown in [15, Lemma 3.29] that every ω-stable space is pseudo-ω_1-compact. For P-spaces, ω-stability and pseudo-ω_1-compactness are equivalent by [15, Proposition 3.30]. It turns out that this equivalence holds for arbitrary products of P-spaces.

Corollary 3.8. Suppose that the product $X = \prod_{i \in I} X_i$ of P-spaces is pseudo-ω_1-compact. Then the space X is ω-stable.

Proof: Let $f : X \to Y$ be a continuous map onto a space Y which admits a coarser second countable Tychonoff topology. Then Y is Hausdorff and $\psi(Y) \leq \aleph_0$, so that $nw(Y) \leq \aleph_0$ by Theorem 3.7. \qed

By [1, Theorem 10], every σ-product of Lindelöf P-spaces is ω-stable. The next corollary extends this result to products of Lindelöf P-spaces.

Corollary 3.9. Every product of Lindelöf P-spaces is ω-stable.

Proof: By Noble’s theorem in [10], finite products of Lindelöf P-spaces are Lindelöf (hence, pseudo-ω_1-compact). Therefore, an arbitrary product $X = \prod_{i \in I} X_i$
of Lindelöf P-spaces is pseudo-ω_1-compact by Lemma 2.3, and the required conclusion follows from Corollary 3.8.

In general, the product of two pseudo-ω_1-compact P-spaces can fail to be pseudo-ω_1-compact. In the class of P-groups, however, pseudo-ω_1-compactness becomes productive by Lemmas 2.2 and 2.3. This explains, in part, the strong factorization property of products of \mathbb{R}-factorizable P-groups given in the next theorem.

Theorem 3.10. Let $G = \prod_{i \in I} G_i$ be a direct product of \mathbb{R}-factorizable P-groups. If $f: G \to Y$ is a continuous map onto a space Y with $\psi(Y) \leq \aleph_0$, then there exists a quotient homomorphism $\pi: G \to H$ onto a second countable topological group H such that $\pi \prec f$. In particular, $\text{nw}(Y) \leq \aleph_0$.

Proof: By Lemmas 2.2 and 2.3, the group G is pseudo-ω_1-compact. Apply Theorem 3.7 to find a countable set $C \subseteq I$ and, for each $i \in C$, a continuous map $h_i: G_i \to \mathbb{N}$ such that $(\prod_{i \in C} h_i) \circ \pi_C \prec f$. Since the groups G_i are \mathbb{R}-factorizable, for each $i \in C$ there exists a continuous homomorphism $p_i: G_i \to K_i$ onto a second countable group K_i such that $p_i \prec h_i$. Note that the fibers $p_i^{-1}(y)$ are G_δ-sets in G_i, so they are open in G_i. Clearly, the homomorphism p_i remains continuous if we endow the group K_i with the discrete topology. The group G_i is pseudo-ω_1-compact by Theorem 1.1, so the cover of G_i by the fibers $p_i^{-1}(y)$, with $y \in K_i$, is countable. Hence the discrete group $K_i = p_i(G_i)$ is countable and the homomorphism p_i is open.

Let p be the direct product of the homomorphisms p_i, $i \in C$. Then the homomorphism $p: \prod_{i \in C} G_i \to \prod_{i \in C} K_i$ is continuous, open and the group $H = \prod_{i \in C} K_i$ is second countable. It is clear that the homomorphism $\varphi = p \circ \pi_C$ of G to H is continuous, open and satisfies $\varphi \prec (\prod_{i \in C} h_i) \circ \pi_C \prec f$. Therefore, there exists a continuous map $i: H \to Y$ such that $f = i \circ \varphi$ and, hence, $Y = i(H)$. This implies that Y has a countable network.

The following corollary to Theorem 3.10 is immediate. It was proved (by a different method) in [15].

Corollary 3.11. Let G be a direct product of \mathbb{R}-factorizable P-groups. Then the group G is \mathbb{R}-factorizable and τ-stable for $\tau \in \{\omega, \omega_1\}$.

Proof: The \mathbb{R}-factorizability of G follows directly from Theorem 3.10. In addition, G is ω_1-stable by [15, Theorem 3.9]. To conclude that G is ω-stable, apply Corollary 3.8 and Lemmas 2.2 and 2.3.

By a theorem of Comfort and Ross [5], the class of pseudocompact groups is productive. Therefore, Corollary 3.11 extends a certain similarity in the permanence properties of \mathbb{R}-factorizable P-groups and pseudocompact groups mentioned in Section 2. In addition, the groups of both classes are ω-stable. In fact, one can apply Lemma 5.9 of [14] to prove the following analogue of Theorem 3.10 for
pseudocompact groups: if a regular space Y of countable pseudocharacter is a continuous image of (a G_δ-subset of) a pseudocompact group, then $nw(Y) \leq \aleph_0$.

4. Open problems

Here we formulate two open problems concerning Theorem 2.5.

Problem 4.1. Is every \aleph_0-bounded P-group topologically isomorphic to a subgroup of an R-factorizable P-group?

Problem 4.2. Does Theorem 2.5 remain valid in the non-abelian case?

References

Departamento de Matemáticas, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco # 186, Col. Vicentina, C.P. 09340, Iztapalapa, Mexico, D.F.

E-mail: chg@xanum.uam.mx, mich@xanum.uam.mx

(Received July 4, 2002, revised November 13, 2003)