Unordered Baire-like vector-valued function spaces.

J.C. Ferrando*

Abstract

In this paper we show that if \(I \) is an index set and \(X_i \) a normed space for each \(i \in I \), then the \(\ell_p \)-direct sum \((\oplus_{i \in I} X_i)_p\), \(1 \leq p \leq \infty \), is UBL (unordered Baire-like) if and only if \(X_i, i \in I \), is UBL. If \(X \) is a normed UBL space and \((\Omega, \Sigma, \mu)\) is a finite measure space we also investigate the UBL property of the Lebesgue-Bochner spaces \(L_p(\mu, X) \), with \(1 \leq p < \infty \).

In what follows \((\Omega, \Sigma, \mu)\) will be a finite measure space and \(X \) a normed space. As usual, \(L_p(\mu, X), 1 \leq p < \infty \), will denote the linear space over the field \(\mathbb{K} \) of the real or complex numbers of all \(X \)-valued \(\mu \)-measurable \(p \)-Bochner integrable (classes of) functions defined on \(\Omega \), provided with the norm

\[||f|| = \left\{ \int_\Omega ||f(\omega)||^p d\mu(\omega) \right\}^{1/p} \]

When \(A \in \Sigma, \chi_A \) will denote the indicator function of the set \(A \).

On the other hand, if \(\{X_i, i \in I\} \) is a family of normed spaces, we denote by \((\oplus_{i \in I} X_i)_p\), with \(1 \leq p < \infty \), the \(\ell_p \)-direct sum of the spaces \(X_i \), that is to say:

\[(\bigoplus_{i \in I} X_i)_p = \{ \mathbf{x} = (x_i) \in \prod\{X_j, j \in I\} : (||x_i||) \in \ell_p \} \]

provided with the norm \(||(x_i)|| = ||(||x_i||)||_p\). If \(p = \infty \), then

\[(\bigoplus_{i \in I} X_i)_\infty = \{ \mathbf{x} = (x_i) \in l_\infty ((X_i)) : \text{card (supp } \mathbf{x} \text{) } \leq N_0 \} \]

*This paper has been partially supported by DGICYT grant PB91-0407.
Received by the editors March 1994
Communicated by J. Schmets

AMS Mathematics Subject Classification: 46A08, 46E40.
Keywords: Unordered Baire-like (UBL) space, Lebesgue-Bochner space, \(\ell_p \)-direct sum.

equipped with the norm \(\| (x_i) \| = \sup \{ \| x_n \|, n \in \mathbb{N} \} \).

A Hausdorff locally convex space \(E \) over \(\mathbb{K} \) is said to be unordered Baire-like, \([6]\) (also called UBL in \([5]\)) if given a sequence of closed absolutely convex sets of \(E \) covering \(E \), there is one of them which is a neighbourhood of the origin. When \(E \) is metrizable, \(E \) is said to be totally barrelled (also called TB in \([5]\)) if given a sequence of linear subspaces of \(E \) covering \(E \) there is one which is barrelled. This last definition coincides with the one given in \([5]\) and \([8]\) for the general locally convex case.

It is known that if \(\mu \) is atomless, \(L_p(\mu, X) \) enjoys very good strong barrelledness properties (even if \(p = \infty \)) \(([1] \text{ and } [2])\). If \(\mu \) has some atom, then \(X \) must share the same strong barrelledness property than \(L_p(\mu, X) \) do. On the other hand, by a well-known result of Lurje, \((\oplus_{i \in \mathbb{N}} X_i)_p \) is barrelled (and hence, Baire-like) if and only if each \(X_i \) is barrelled (see \([5]\), 4.9.17). This result has been extended independently in \([3]\) and \([4]\) by showing that, whenever each \(X_i \) is seminormed, \((\oplus_{i \in I} X_i)_p \) is barrelled (ultrabarrelled) if and only each \(X_i \) is barrelled (ultrabarrelled). For the definitions of Baire-like and ultrabarrelled spaces see \([5]\) (pp. 333 and 366).

In this paper we are going to investigate for a general positive \(\mu \) the UBL property of the space \(L_p(\mu, X), 1 \leq p < \infty \), whenever \(X \) is UBL. We will also prove that \((\oplus_{i \in I} X_i)_p \), with \(1 \leq p \leq \infty \), is UBL if and only if each \(X_i \) is UBL.

Proposition 1 If \(X \) is an UBL space, then \(L_1(\mu, X) \) is UBL.

Proof. Our argument is based upon the proof of the Proposition 2 of \([7]\). So, let \(\{W_n, n \in \mathbb{N}\} \) be a sequence of closed absolutely convex subsets of \(L_1(\mu, X) \) covering \(L_1(\mu, X) \). It suffices to show that there is an \(i \in \mathbb{N} \) such that \(W_i \) absorbs the family

\[
\{\chi_A x/\{\mu(A)\}, \|x\| = 1, A \in \Sigma, \mu(A) \neq 0\}
\]

since, if \(\chi_A x/\{\mu(A)\} \in qW_i \) for some \(q \in \mathbb{N} \), each \(x \in X \) of norm one and each \(A \in \Sigma \) with \(\mu(A) \neq 0 \), given any simple function \(s = \sum_{1 \leq j \leq n} y_j \chi_{C_j} \) of \(L_1(\mu, X) \), with \(C_j \in \Sigma, \mu(C_j) \neq 0, \|y_j\| \neq 0 \) for \(1 \leq j \leq n \) and \(C_i \cap C_j = \emptyset \) if \(i \neq j \), so that \(\|s\|_1 \leq 1 \), then \(\sum_{1 \leq j \leq n} \|y_j\|/\mu(C_j) = \|s\|_1 \leq 1 \), and since \(W_i \) is absolutely convex,

\[
\sum_{1 \leq j \leq n} y_j \chi_{C_j} = \sum_{1 \leq j \leq n} \|y_j\|/\mu(C_j) \chi_{C_j}(y_j/\|y_j\|)/\{\mu(C_j)\} \in qW_i
\]

Hence, \(W_i \), being closed, absorbs the closed unit ball of \(L_1(\mu, X) \).

Let us define the closed absolutely convex subsets of \(X \)

\[
V_{nm} = \{x \in X : \chi_A x/\{\mu(A)\} \in mW_n \text{ for each } A \in \Sigma \text{ with } \mu(A) \neq 0\}
\]

for each \(n, m, n \in \mathbb{N} \).

Given \(z \in X, z \neq 0 \), then \(L(z) := \{f(z) : f \in L_1(\mu)\} \) is a closed subspace of \(L_1(\mu, X) \) isomorphic to \(L_1(\mu) \) and therefore there are \(r, s \in \mathbb{N} \) such that \(\chi_A x/\{\mu(A)\} \in sW_r \) for each \(A \in \Sigma \) with \(\mu(A) \neq 0 \). This implies that \(z \in V_{rs} \) and, consequently, that \(\bigcup\{V_{nm} : n, m \in \mathbb{N}\} = X \). As \(X \) is UBL there are \(i, j, k \in \mathbb{N} \) so that \(kV_{ij} \) contains the unit sphere of \(X \). Hence \(\chi_A x/\{\mu(A)\} \in jkW_i \) for each \(x \in X \) so that \(\|x\| = 1 \) and each \(A \in \Sigma \) with \(\mu(A) \neq 0 \). This completes the proof. \(\square \)
Proposition 2 Let X be an UBL space. If $L_p(\mu, X), 1 < p < \infty$, is a TB space, then $L_p(\mu, X)$ is UBL.

Proof. If $\{W_n, n \in \mathbb{N}\}$ is a sequence of closed absolutely convex subsets of $L_p(\mu, X)$ covering $L_p(\mu, X)$, a similar argument to the proof of the previous proposition shows that there exists an index $j \in \mathbb{N}$ such that W_j absorbs the family

$$\{\chi_A x / \{\mu(A)\}^{1/p}, \|x\| = 1, A \in \Sigma, \mu(A) \neq 0\}.$$}

This implies that the linear span of W_j contains the subspace of the simple functions. Hence span(W_j) is a dense subspace of $L_p(\mu, X)$ and thus ([6], Theorem 4.1) there is no loss of generality by assuming that span(W_n) is dense in $L_p(\mu, X)$ for each $n \in \mathbb{N}$.

Since we have supposed that $L_p(\mu, X)$ is TB, it follows that there exists an $i \in \mathbb{N}$ such that span(W_i) is barrelled. This ensures, W_i being closed in $L_p(\mu, X)$, that span(W_i) is closed. Consequently, one has that span$(W_i) = L_p(\mu, X)$. This implies that W_i is absorbent in $L_p(\mu, X)$. Since W_i was absolutely convex and closed by hypothesis, we have that W_i is a barrel in $L_p(\mu, X)$ and hence a zero-neighbourhood because $L_p(\mu, X)$ is always barrelled ([2]).

Lemma 1 Let $\{X_n, n \in \mathbb{N}\}$ be a sequence of normed spaces and assume that $\{W_n, n \in \mathbb{N}\}$ is a sequence of closed absolutely convex subsets of $(\oplus_{n=1}^\infty X_n)_p$ covering $(\oplus_{n=1}^\infty X_n)_p$, $1 \leq p \leq \infty$. Then there is $m \in \mathbb{N}$ such that

$$\text{span}(W_m) \supseteq (\oplus_{n=m}^\infty X_n)_p.$$}

Proof. If this is not the case, for each $n \in \mathbb{N}$ there is

$$x_n \in (\oplus_{k>n} X_k)_p \setminus \text{span}(W_n)$$

with $\|x_n\| = 1$. Since the sequence (x_n) is bounded in $(\oplus_{n=1}^\infty X_n)_p$, then for each $\xi \in \ell_1$ the series $\sum_n \xi_n x_n$ converges to some $x(\xi)$ in the completion $(\oplus_{n=1}^\infty X_n)_p$ of $(\oplus_{n=1}^\infty X_n)_p$. Since $x(\xi)_j = \sum_n \xi_n x_{nj} = \sum_{1 \leq n \leq j-1} \xi_n x_{nj} \in X_j$, it follows that $x(\xi) / (\oplus_{n=1}^\infty X_n)_p$ and then $D = \{\sum_n \xi_n x_n, \xi \in \ell_1, \|\xi\|_1 \leq 1\}$ is a Banach disk in $(\oplus_{n=1}^\infty X_n)_p$. Consequently, there must be some $m \in \mathbb{N}$ such that W_m absorbs D and hence $x_m \in \text{span}(W_m)$, a contradiction.

Theorem 1 If X_n is UBL for each $n \in \mathbb{N}$, then $(\oplus_{n=1}^\infty X_n)_p, 1 \leq p \leq \infty$, is UBL.

Proof. Our argument adapts some methods of [8] to our convenience.

If $(\oplus_{n=1}^\infty X_n)_p$ is not UBL, there exists a sequence $\{W_n, n \in \mathbb{N}\}$ of closed absolutely convex subsets of $(\oplus_{n=1}^\infty X_n)_p$ covering $(\oplus_{n=1}^\infty X_n)_p$ such that no W_n is a neighbourhood of the origin in $(\oplus_{n=1}^\infty X_n)_p$.

Define $F = \{F \in \{\text{span}(W_n), n \in \mathbb{N}\} : \exists m \in \mathbb{N} \in F \supset (\oplus_{n=m}^\infty X_n)_p\}$. If F does not cover $(\oplus_{n=1}^\infty X_n)_p$ then $(\oplus_{n=1}^\infty X_n)_p$ is covered by all those subspaces span(W_n) that do not belong to F, as a consequence of the Theorem 4.1 of [6]. But this contradicts the previous lemma. Hence F covers the whole space.
Let $\mathcal{F}_n := \{ F \in \mathcal{F} : F \text{ does not contain } X_n \}$, where we consider X_n as a subspace of $(\oplus_{n=1}^{\infty} X_n)_p$. Let us see first that $\mathcal{F} = \bigcup \{ \mathcal{F}_n, n \in \mathbb{N} \}$. Indeed, if $G \in \mathcal{F}$, there is a $n(G) \in \mathbb{N}$ with $G \supseteq (\oplus_{n=n(G)} X_n)_p$. Hence, there must be $r \leq n(G)$ such that G does not contain X_r, otherwise $G = (\oplus_{n=1}^{\infty} X_n)_p$, which is a contradiction because $G = \text{span}(W_p)$ for some p and we would have that W_p is a barrel, hence a zero-neighbourhood since $(\oplus_{n=1}^{\infty} X_n)_p$ is barrelled. Thus, $G \in \mathcal{F}_r$.

Let us show that considering X_j as a subspace of $(\oplus_{n=1}^{\infty} X_n)_p$ there is $j \in \mathbb{N}$ such that $\cup \{ F, F \in \mathcal{F}_j \} \supseteq X_j$. Otherwise for each $j \in \mathbb{N}$ there would be some norm one $x_j \in X_j$ verifying that $x_j \notin \cup \{ F, F \in \mathcal{F}_j \}$. Defining $x_j \in (\oplus_{n=1}^{\infty} X_n)_p$ such that $x_{jk} = 0$ if $j \neq k$ while $x_{jj} = x_j$, then (x_j) is a basic sequence in $(\oplus_{n=1}^{\infty} X_n)_p$ equivalent to the unit vector basis of ℓ_p if $p < \infty$ or c_0 if $p = \infty$. Hence, reasoning as in the previous lemma, we have that the closed linear span L of (x_j) in $(\oplus_{n=1}^{\infty} X_n)_p$, is contained in $(\oplus_{n=1}^{\infty} X_n)_p$. Since \mathcal{F} covers $L \subseteq (\oplus_{n=1}^{\infty} X_n)_p$ and L is a Banach space, it follows that there is some $F \in \mathcal{F}$ so that $x_j \in F$ for each $j \in \mathbb{N}$. But, as we have seen that $\mathcal{F} = \cup \{ \mathcal{F}_n, n \in \mathbb{N} \}$, there is a $k \in \mathbb{N}$ such that $F \in \mathcal{F}_k$. Therefore $x_k \in \cup \{ G : G \in \mathcal{F}_k \}$, which is a contradiction.

Finally, choose a positive integer m such that $\cup \{ F : F \in \mathcal{F}_m \} \supseteq X_m$. As X_m is UBL, there is $G \in \mathcal{F}_m$ with $G \supseteq X_m$. This is a contradiction, since $G \in \mathcal{F}_m$ if and only if $(G \in \mathcal{F}$ and) G does not contain X_m. \qed

Theorem 2 Let I be a non-empty index set and let $\{ X_i, i \in I \}$ be a family of normed spaces. Then $(\oplus_{i \in I} X_i)_p$, with $1 \leq p \leq \infty$, is UBL if and only if X_i is UBL for each $i \in I$.

Proof. If I is finite, the conclusion is obvious, and if $I = \mathbb{N}$ the result has been proved in the previous theorem. Thus we may assume that card $I > \aleph_0$. If $(\oplus_{i \in I} X_i)_p$ is not UBL there exists a sequence $\{ W_n, n \in \mathbb{N} \}$ of closed absolutely convex subsets of $(\oplus_{i \in I} X_i)_p$ covering $(\oplus_{i \in I} X_i)_p$ such that no W_n is a neighbourhood of the origin in $(\oplus_{i \in I} X_i)_p$. Hence there is a sequence (x_n) in the unit sphere of $(\oplus_{i \in I} X_i)_p$ such that $x_n \notin \text{span}(W_n)$ for each $n \in \mathbb{N}$. As each x_n is countably supported $J := \cup \{ \text{supp } x_n, n \in \mathbb{N} \}$ is a countable subset of I. But $(\oplus_{j \in J} X_j)_p$ is UBL as a consequence of the previous theorem, and hence there is some $m \in \mathbb{N}$ such that $W_m \cap (\oplus_{j \in J} X_j)_p$ is a neighbourhood of the origin in $(\oplus_{j \in J} X_j)_p$. Therefore $x_m \in \text{span}(W_m)$, a contradiction. \qed

Open problem: Assuming that μ is atomless and X is a normed space, is $L_p(\mu, X)$, $1 \leq p < \infty$, a TB space?

ACKNOWLEDGMENT. The author is indebted to the referee for his useful comments and suggestions.
References

J.C. FERRANDO
E.U. INFORMATICA.
DEPARTAMENTO DE MATEMATICA APLICADA.
UNIVERSIDAD POLITECNICA.
E-46071 VALENCIA. SPAIN.